Development of Complex Hydride Hydrogen Storage Materials and Engineering Systems

James A. Ritter, Armin D. Ebner, Sarang A. Gadre, Tanya Prozorov and Jun Wang
Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208
ritter@engr.sc.edu
May 25, 2004

This presentation does not contain any proprietary or confidential information.
<table>
<thead>
<tr>
<th>Objectives</th>
<th>Hydrogen Storage Engineering Systems Research</th>
<th>Complex Hydride Hydrogen Storage Materials Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>✚ Develop 1-D, 2-D and 3-D models for metal and complex hydride hydrogen storage systems</td>
<td>✚ Study effect of metal dopants, proprietary additive, and Al powder on dehydrogenation and rehydrogenation of NaAlH₄</td>
<td></td>
</tr>
<tr>
<td>✚ Calibrate models using Savannah River Technology Center metal hydride hydrogen storage system</td>
<td>✚ Compare dehydrogenation kinetics of un-doped and Ti-doped NaAlH₄, LiAlH₄, and Mg(AlH₄)₂.</td>
<td></td>
</tr>
<tr>
<td>✚ Develop user friendly software package for metal hydride hydrogen storage system design optimization and scale-up</td>
<td>✚ Initiate Raman and other spectroscopic and molecular modeling analyses for fundamental understanding of dopant and other additives.</td>
<td></td>
</tr>
</tbody>
</table>
2004 FY Budget

- Total Funding (18 mo Period Beginning 06/06)
 - $335,000 + $83,759 cost share

- Personnel
 - PI: 1.35 academic and 2 summer months
 - Research Professor: 8.5 calendar months
 - Postdoctoral Associate: 9 calendar months
 - Two PhD Students plus Tuition: 36 calendar months

- Travel

- Materials and Supplies
Technical Barriers and Targets

Hydrogen Storage Material and System

DOE Targets:

2005 – 1.5 kWh/kg (4.5 wt %), 1.2 kWh/L, $6/kWh
2010 – 2 kWh/kg (6 wt %), 1.5 kWh/L, $4/kWh
2015 – 3 kWh/kg (9 wt %), 2.7 kWh/L, $2/kWh

Technical Barriers:

- higher system weight, high volume
- high cost of storage
- durability of at least 1500 cycles
- lower than expected energy efficiency
- long refueling time
- lack of availability of codes and standards
- no life cycle and efficiency analyses
Approach

- Synthesis and analysis of new and improved complex hydrides for hydrogen storage
 - effect of various preparation methods (e.g. ball milling), additives and metal dopants on the hydrogenation/dehydrogenation performance of these materials

- Mathematical model development for metal and complex hydride hydrogen storage systems
 - develop models of varying degree of complexity for accurately predicting hydrogen charge and discharge behavior from the storage bed.
 - study various geometric configurations for improving design and performance of the storage vessel
Project Safety

Complex Hydrides Synthesis

- Sodium alanate is highly flammable material. It readily reacts, with water generating flammable and explosive hydrogen gas
- Storage under nitrogen, away from air mandatory \Rightarrow synthesis carried out inside nitrogen glove-box
- Recent minor incident with Ti-doped NaAlH$_4$ at SNL, even when inside and Ar glove-box, reiterates the sensitivity of this material with exposure to water

Hydrogen Storage Systems Research

- Mischmetal alloy based hydride used for this study very stable at room temperature. Auto-ignition temperature above 500 °C. It is non-explosive at room temperature, but other metal hydrides can be explosive.
- Hydride particles undergo expansion and contraction during charge and discharge cycles. Vessel of high of enough material strength is used to withstand this stress.
Phase I: Complete analysis on the reversibility of the Ti-doped LiAlH$_4$ system

Phase II: Complete analysis on the reversibility of the Ti-doped Mg(AlH$_4$)$_2$ system

Phase III: Complete Raman and molecular modeling analyses on the Ti-doped NaAlH$_4$ system

Phase IV: Complete analysis on the Ti-doped NaAlH$_4$ system with proprietary additive

Phase V: Complete analysis on the effect of high temperature and pressure ball milling of complex hydrides

Phase VI: Complete analysis on long-term cycling and scale-up of promising complex hydrides
Effect of Additive Concentration on Dehydrogenation of 2% Ti-NaAlH₄

At 90°C, 10 wt% additive produces six fold increase in kinetics!

Best kinetics observed so far for this widely studied complex hydride!
Effect of Cycling on Dehydrogenation of 2% Ti-NaAlH₄ with 10 wt% Additive and 5 wt% Al

Addition of Al reduces cycling losses, while additive improves kinetics!

Qualitative Kinetics of the H₂ Charge and Discharge Process for 2% Ti-NaAlH₄ with 10 wt% Additive and 5 wt% Al

Charge rates of H₂ much faster than discharge rates, due to substantial driving force.

Excellent charge rates even at 80°C!
Industrial Fuel Cell Vehicle Program

Partnership
- **Industrial:** John Deere
- **Government:** WSRC/DOE
- **University:** USC

WSRC Metal Hydride Vessel Schematic*
- **Side view:**
 - Aluminum Foam
 - Container Wall
 - Porous Media Filter
 - Metal hydride particles occupying the void space of the aluminum foam
 - Dividers
 - Thermal insulation
- **End view:**
 - H₂ in/out
 - Coolant in
 - Coolant out
 - Dividers
 - Cooling tube

*Patented

Modeling and experiments based on commercially viable \(\text{L}_{0.06} \text{Ni}_{4.96} \text{Al}_{0.04} \) metal hydride system.

Mathematical Models

Six Systematically More Realistic Models
- isothermal equilibrium model (analytical)*
- one dimensional axial-flow*
- one dimensional axial-flow, radial-energy model (AFRE)
- AFRE model with variable conductivity
- two-dimensional
- three-dimensional

Experimental Hydrogen Storage Test Facility Layout

- **Atmospheric vent**
- **Mass flow meter**
- **To vacuum pump**
- **H₂ tank**
- **Pressure Transducer**
- **Thermocouple Locations**

One of these tubes in the USC facility.
3-D model Predictions of the Temperature Profile Variation During Discharge

30 SLPM of hydrogen discharging from 24 atm to 1 atm in 0.65 hrs from initial temperature of 295; 295 K cooling water flowing at 0.5 gpm.
3-D Model Predictions of the Loading Profile During Discharge

30 SLPM of hydrogen discharging from 24 atm to 1 atm in 0.65 hrs from initial temperature of 295; 295 K cooling water flowing at 0.5 gpm.
Interactions and Collaborations

- Dr. Ragaiy Zidan, Hydrogen Technology Laboratory, Savannah River Technology Center
- Dr. Maximilian Fichtner, Karlsruhe Research Center, Germany
- Dr. Jacque Huot, Hydro-Quebec, Canada
- Professor Alexander Angerhofer, Chemistry Department, University of Florida
- Professor Ruhullah Massoudi, Chemistry Department, South Carolina State University
Fundamental Hydrogen Storage
Materials Issues Being Researched

- fundamental understanding of the roles of the Ti dopant, its interaction with the additive and even the presence of adding additional Al

 What else can be added and why?

- reproducible processing, i.e., ball milling is more of an art than a science

 Is there a better way?

- extension of the NaAlH$_4$ research to other complex hydrides

How much effort should be devoted to what systems?
Fundamental Hydrogen Storage Systems
Issues Being Researched

* thermoconductivity of the metal hydride as a function of hydrogen loading and temperature

How do you predict this important property, especially when coupled with the metal foam?

* thermoconductivity of the metal (Al) foam heat transfer insert

Are there better materials or structures to improve heat transfer?

* fundamental design of the metal hydride bed

How many heat transfer tubes, in what configuration and whether to operate multiple beds in series or parallel?