Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson
Future Energy Solutions
Air Products and Chemicals, Inc.
May 24, 2004

Contributors:
Bharat Bhatt (Process Design)
Bob Byerley (Process Controls)
David Chalk (Machinery Design)
Simone Kothare (Dynamic Modeling)
William Kottke (Process Design/Machinery)
Jorge Mandler (Advanced Controls)
Nick Pugliese (Fabrication)

This presentation does not contain any proprietary or confidential information
FY 04 Objectives

- **Primary**
 - Develop a process design for a novel compressor
 - Identify potential hydraulic fluids
 - Complete technical/economic evaluation of system

- **Secondary**
 - Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling
Budget

<table>
<thead>
<tr>
<th></th>
<th>To Date</th>
<th>Remaining</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>$290,141</td>
<td>$155,833</td>
<td>$445,974</td>
</tr>
<tr>
<td>Materials</td>
<td>$19,481</td>
<td>$225,420</td>
<td>$244,901</td>
</tr>
<tr>
<td>Total</td>
<td>$309,622</td>
<td>$381,253</td>
<td>$690,875</td>
</tr>
</tbody>
</table>

- 50% Cost Share
- Special Program through Pennsylvania Department of Environmental Protection
Technical Barriers and Targets

- **Technical Barriers**
 - High Cost of Hydrogen Compression
 - High Cost of Storage and Dispensing
 - Cost of Hydrogen

- **FY 05 Targets**
 - $0.29/kg cost of compression
 - $0.19/kg cost of storage and dispensing
 - 85% efficient compression
 - $3/kg hydrogen fuel
Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
 - Measure hydrogen solubility in various fluids
 - Test permeation of pressure transducer diaphragms at various pressures
- Dynamic Modeling
 - Evaluate compressor using a custom model
 - Optimize design, operation and control
 - Evaluate heat transfer issues and check isothermal assumptions
 - Evaluate sensitivity of unit to various design parameter upsets and operating conditions
- Component Design, Fabrication, and Testing
- Prototype
- Long Term Testing
Approach

Design Issues

- Compressor
 - Isothermal
 - High pressure
 - Single stage
 - Low cost

- Fueling Station
 - Lower the delivered cost of hydrogen
 - Composite vessels
 - Breakaway and fuel nozzle
 - Fueling codes
Safety

- **Air Products Hydrogen Experience**
 - Over 10,000 fills (60/week)
 - 13 fuelers installed last year (>20 total, 6 in construction)
 - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, reformers, electrolysis)

- **Internal Hazard and Operability Review**
 - Divide system into nodes
 - Review deviations and effects

- Our fueling systems have undergone rigorous third party independent safety reviews
 - ABS Consulting – Singapore
 - NASA - White Sands, NM
 - KHK/JHPGSL – Kagoshima, Japan

- **Management of Change, Near Miss Reporting, Quantified Risk Assessment, and other project management systems.**
Timeline

| Task Name | 2002 Qtr 3 | 2002 Qtr 4 | 2003 Qtr 1 | 2003 Qtr 2 | 2003 Qtr 3 | 2003 Qtr 4 | 2004 Qtr 1 | 2004 Qtr 2 | 2004 Qtr 3 | 2004 Qtr 4 | 2005 Qtr 1 | 2005 Qtr 2 | 2005 Qtr 3 | 2005 Qtr 4 | 2006 Qtr 1 | 2006 Qtr 2 | 2006 Qtr 3 |
|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Start Date | | | | | | | | | | | | | | | | | |
| Contract Approval | | | | | | | | | | | | | | | | | |
| 1.0 Feasibility/System Design | | | | | | | | | | | | | | | | | |
| 1.1 System Pressure Analysis | | | | | | | | | | | | | | | | | |
| 1.2 Isothermal Compressor Analysis | | | | | | | | | | | | | | | | | |
| 1.3 Packless Valve Analysis | | | | | | | | | | | | | | | | | |
| Program Review | | | | | | | | | | | | | | | | | |
| 2.0 System Design | | | | | | | | | | | | | | | | | |
| 2.1 Flow Lab Design | | | | | | | | | | | | | | | | | |
| 2.2 Dispenser Design | | | | | | | | | | | | | | | | | |
| 2.3 Isothermal Compressor Design | | | | | | | | | | | | | | | | | |
| 2.4 Packless Valve Design | | | | | | | | | | | | | | | | | |
| Program Review | | | | | | | | | | | | | | | | | |
| 3.0 Lab Installation and Testing | | | | | | | | | | | | | | | | | |
| 3.1 Compressor and Valves | | | | | | | | | | | | | | | | | |
| 3.2 Connectors and Flow Controls | | | | | | | | | | | | | | | | | |
| 3.3 Composite Vessels | | | | | | | | | | | | | | | | | |
| 3.4 Installation | | | | | | | | | | | | | | | | | |
| 3.5 Testing | | | | | | | | | | | | | | | | | |
| Program Review | | | | | | | | | | | | | | | | | |
| 4.0 Field Installation and Operation | | | | | | | | | | | | | | | | | |
| 4.1 Penn State Review and Plan | | | | | | | | | | | | | | | | | |
| 4.2 Installation | | | | | | | | | | | | | | | | | |
| 4.3 Operational Field Tests | | | | | | | | | | | | | | | | | |
| Program Management | | | | | | | | | | | | | | | | | |
| 5.0 Program Management | | | | | | | | | | | | | | | | | |
| 5.1 Final Report | | | | | | | | | | | | | | | | | |
Technical Accomplishments

Novel Compressor – Basic Concept

- **No Mechanical Piston:** Gas compressed by liquid piston
- **Isothermal:** Gas cooled during compression
- **Single Stage:** Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance concerns
- **Liquid Pump:** Inherently lubricates all dynamic seals
- **Dynamic Gas Seals Eliminated:** No gas seals to atmosphere
- **Issues:**
 - 14,000 psig hydraulic pump
 - Fluid selection
 - Level control
 - Inefficient pump
 - Fluid carryover

Patents Pending
Technical Accomplishments
Hydraulic Fluid Selection

Criteria:
- Low viscosity for good flowing characteristics
- Low volatility to avoid contamination of downstream equipment and fluid loss
- Low H₂ solubility to minimize H₂ recycle
- Lubricating properties at high pressure to minimize pump wear

Problem:
- Hydrogen solubility data not available for fluid at high pressure
Technical Accomplishments

Fluid Solubility Test

- H₂ fills test chamber under pressure
- Fluid introduced, pumped in
- Pressure measured vs. time

H₂ Solubility & Pressure Transmitters Test Unit

Cylinder diameter & surface area simulates actual hardware
Technical Accomplishments

Pressure Decay

H2 Solubility Test with Test Fluid @ 12,600 psig

Current Design Basis:
Total Cycle Time = 30 seconds
Assumed Degas Volume Loss = 2% per cycle
Observed Pressure Loss < 0.2% in 30 seconds

solubility well below acceptable limits
Technical Accomplishments
Cylinder Pressure and Temperature

Cylinder Pressure (psia) vs Time (sec)

Cylinder Temperature (°C) vs Time (sec)

~ 3-4 °C temperature rise for 140:1 compression ratio
Technical Accomplishments
Dyanaic Simulation Results

- Identified key operational issues and design parameters:
 - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
 - Liquid inventory management needs (pressure/flow regulation)

- Quantitative results on potential sources of inefficiency:
 - Hydraulic intensifier friction
 - Circuit DPs
 - Hydrogen solubility in compression fluid
 - Heat transfer limits and design of heat exchanger

- Process sensitivities to the following parameters studied:
 - Initial accumulator gas volume
 - Pump flow
 - Hydraulic intensifier flow
 - Valve flow coefficients

novel H₂ compressor unit is feasible
Technical Accomplishments

Pressure Analysis

- All automotive OEM’s are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 3 minutes) is the only method that has commercial potential.
- Cascade fueling is the most promising method of achieving a low cost, fast fill.
- Cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen on most days.
- ASME and Air Products requirements for relief valves (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

\[
(700 \text{ Barg} \times 125%) / 90\% = 972 \text{ Barg MAWP (14100 psig)}
\]

System pressure requirement is 14100 psig MAWP
Technical Accomplishments
Fueling Apparatus

- Air Products has developed hydrogen fueling systems up to 700 barg (10,000 psig).
 - Valves
 - Manual
 - Actuated
 - Pressure Control
 - Flexible Hose
 - Tubing
 - Fittings and Adapters
 - Controller
 - Packaging

Most components available today for 700 barg fueling
FY 05 Next Steps

- Safety Review of Process / Hazard Review.
- Complete detailed design / drawings.
- Obtain quotes for all parts & purchase.
- Assemble and Test.
- Determine overall costs.
- Determine feasibility of future use.
- Long term prototype testing, if warranted.
- Scale-up unit, if warranted.
Interactions/Collaborations

- Air Products and Chemicals, Inc.
 - Future Energy Solutions
 - Advanced Systems Machinery
 - Advanced Controls
 - Dynamic Modeling
 - Corporate Safety
Questions?
Thank you
tell me more
www.airproducts.com