

## 2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

Hydrogen and Natural Gas Blends; Converting Light and Heavy Duty Vehicles

Kirk Collier
Collier Technologies
May, 2004

This presentation does not contain any proprietary or confidential information



#### **Project Objectives:**

To develop and demonstrate the viability of hydrogen natural gas mixtures (HCNG) as a means of providing a transition strategy to hydrogen fuel cells

- Demonstrate vehicle reliability of HCNG
- Demonstrate reduced vehicle emissions
- Develop commercial products that will utilize major advantages of HCNG



## **Budget**

- Total Funding Since Fy'99 = 929k
- Cost Share = 370k
- Cost to DoE = 559k

Funding in FY'04 – Currently 50k



## **Technical Barriers and Targets**

#### Barriers

- Achieve equivalent power to previous fuel
  - Created by using charge dilution to achieve reduced exhaust emissions

## Targets

- Meet SULEV NOx emissions for light-duty vehicles
- Meet proposed 2007 NOx emissions for transit buses (0.02 g/hp-hr)



## **Approach**

- Use cooled exhaust gas recirculation with the addition of a supercharger for lightduty vehicles
- Use lean burn with increased engine displacement and higher turbocharger boost pressures for heavy-duty vehicles



## **Project Timeline**

| 10/1999 - 4/2002 | 4/2002 - 5/2003 | 5/2003 - 9/2004 |  |
|------------------|-----------------|-----------------|--|
| Phase I          | Phase II        | Phase III       |  |

- Phase I Initial Development
  - Design, build and test heavy duty bus engine
  - Design light-duty conversion to HCNG
- Phase II Deployment
  - Integrate heavy duty engine into existing bus and deliver to the City of Las Vegas
  - Convert light-duty vehicle and deliver to the City of Las Vegas
- Phase III Expand Fleet & Develop New Bus Platform
  - Conversion of additional light-duty vehicles
  - Development and testing of new heavy duty engine platform



# Technical Accomplishments/Progress (LDV)

- Successfully developed "kit" that is user installable
- Have successfully demonstrated 50k miles of trouble free operation
- Demonstrated NOx reductions from 24 to 96%, depending on test and application



## **Emissions Results (LDV)**

#### **Ford F150**

| Fuel     | Test | NMHC     | СО       | NOx      |  |
|----------|------|----------|----------|----------|--|
|          |      | (g/mile) | (g/mile) | (g/mile) |  |
| HCNG     | FTP  | 0.018    | 0.251    | 0.084    |  |
| Gasoline | FTP  | 0.115    | 1.551    | 0.167    |  |
| CNG      | FTP  | 0.023    | 0.567    | 0.110    |  |



#### **HCNG** Ford F150 Emissions Results



#### CLEAN AIR VEHICLE TECHNOLOGY CENTER

1975 Federal City Gasoline Test

| T            | 6224                  |                                 | Vahial-                |                       |                         | Fuel                       |                       |               |
|--------------|-----------------------|---------------------------------|------------------------|-----------------------|-------------------------|----------------------------|-----------------------|---------------|
| Test         |                       |                                 | Vehicle                | #01NRG0               | .1                      | Fuel                       | 200/                  | _             |
|              | e 10/24/01<br>e 10:13 |                                 |                        | 2001 ford             |                         | Name<br>CWF                | 30%hydroge            | n             |
|              | Cell 1                |                                 |                        | 1FTRX17L51N           |                         | OWF                        |                       |               |
|              | t epa75               |                                 |                        | 1fmxt05.4g            |                         | Spc Grv                    |                       |               |
|              | t epa75               |                                 | Odometei               |                       |                         | SPC GIV                    |                       |               |
|              | r Gil Rodriau         | 97 D                            | vno Inertia            |                       |                         | R-Facto                    |                       |               |
|              | r Glen Muñoz          |                                 |                        | 20.8/18.4             |                         | Control 7                  |                       |               |
| •            |                       | ,                               |                        |                       |                         |                            |                       |               |
|              | Conditions<br>30.036  | 30.034                          | 30.035                 |                       | Commei                  | n <b>ts</b><br>gen 70%natu | ral and               |               |
| Baro (inHg   | l A                   | 45.69                           | 46.13                  |                       | 30 /ollydlog            | cii /0/oiiatu              | iai gas               |               |
| Dew Pt (F    | 4                     | 80.71                           | 82.79                  |                       |                         |                            |                       |               |
| Dry Temp (F  | 4                     | 29.207%                         | 27.764%                |                       |                         |                            |                       |               |
| Humidit      | ,                     | 45.00                           | 45.77                  |                       |                         |                            |                       |               |
| Abs (gr/ll   |                       | 0.877                           | 0.880                  |                       | Tire Precen             | re=45 pci T                | rans. Type=A-4,       | 40% fill=5.0  |
| NOx K Factor | 0.077                 | 0.077                           | 0.000                  |                       |                         | -                          | ulation used.         | 10/0 1111 3.0 |
| Phase Var    | iables                |                                 |                        |                       | LI A Tuel e             | conomy care                | uiauoii useu.         |               |
| Thace van    | Begin                 | End                             | Length                 | Viol                  | Dist (mi)               | Vmix(ft3)                  |                       |               |
| Phase 1      |                       | 10:21:48                        | 509                    | 0                     | 3.598                   | 2850.89                    | 1                     |               |
| Phase 2      |                       | 10:36:18                        | 870.4                  | 0                     | 3.861                   | 4953.96                    | †                     |               |
| Phase 3      | 10:46:19              | 10:54:46                        | 507.7                  | 0                     | 3.590                   | 2888.72                    | 1                     |               |
|              |                       |                                 |                        |                       |                         |                            | _                     |               |
| Bag Readi    | ngs                   |                                 |                        |                       |                         |                            |                       |               |
| Phase 1      |                       | HC ppmC                         | CO ppm                 | NOX ppm               | % CO2                   |                            | NMHCppm               |               |
|              | Full Scale            | 100.00                          | 500.00                 | 30.00                 | 2.00                    | 50.00                      |                       | DE            |
|              | Sample Conc.          | 32.310                          | 87.997                 | 0.521                 | 1.591                   | 26.598                     | 1.908                 | 6.11          |
| A            | mbient Conc.          | 9.302                           | 0.000                  | 0.072                 | 0.054                   | 6.823                      | 1.503                 |               |
|              | Net Conc.             | 24.532                          | 87.997                 | 0.461                 | 1.546                   | 20.892                     | 0.652                 |               |
|              | Grams                 | 1.142                           | 8.269                  | 0.062                 | 2283.94                 | 0.973                      | 0.030                 |               |
| Phase 2      |                       |                                 |                        |                       |                         |                            |                       |               |
|              | Full Scale            | 30.00                           | 100.00                 | 30.00                 | 2.00                    | 50.00                      |                       | DF            |
|              | Sample Conc.          | 9.794                           | 5.832                  | 0.084                 | 0.941                   | 7.655                      | 1.045                 | 10.38         |
| A            | mbient Conc.          | 8.905                           | 0.000                  | 0.075                 | 0.053                   | 5.950                      | 1.294                 |               |
|              | Net Conc.             | 2.479                           | 5.832                  | 0.016                 | 0.894                   | 2.278                      | 0.000                 |               |
|              | Grams                 | 0.201                           | 0.952                  | 0.004                 | 2293.82                 | 0.184                      | 0.000                 |               |
| Phase 3      | <b>.</b>              |                                 |                        |                       |                         |                            |                       |               |
|              | Full Scale            | 30.00                           | 100.00                 | 30.00                 | 2.00                    | 50.00                      |                       | DE            |
|              |                       | 16.297                          | 25.300                 | 0.078                 | 1.392                   | 13.454                     | 0.920                 | 7.01          |
|              | Sample Conc.          | 10.277                          |                        |                       |                         |                            | 1 100                 |               |
|              | mbient Conc.          | 6.263                           | 0.000                  | 0.073                 | 0.054                   | 4.438                      | 1.190                 |               |
|              |                       |                                 | 0.000<br>25.300        | 0.073<br>0.016        | 0.054<br>1.346          | 4.438<br>9.649             | 0.000                 |               |
| Α            | Net Conc. Grams       | 6.263<br>10.927<br><b>0.516</b> | 25.300<br><b>2.409</b> | 0.016<br><b>0.002</b> | 1.346<br><b>2014.67</b> | 9.649<br><b>0.455</b>      | 0.000<br><b>0.000</b> |               |
|              | Net Conc. Grams       | 6.263<br>10.927                 | 25.300                 | 0.016                 | 1.346                   | 9.649                      | 0.000                 | <u>MPG</u>    |



# Technical Accomplishments/Progress (HDV)

- Demonstrated proposed 2007 NOx emissions (0.02 g/hp-hr) with CTIdesigned engine
- Designed, developed and manufactured cylinder heads for Daewoo 11L bus engine



## **Exhaust Emissions for CTI-Designed Engine**

| Individual Modes           | NOx        | THC        | NMHC       | CO         | Weighting |
|----------------------------|------------|------------|------------|------------|-----------|
| ilidividual Modes          | (g/bhp-hr) | (g/bhp-hr) | (g/bhp-hr) | (g/bhp-hr) | Factor    |
| 1800 rpm - 100% Load       | 0.15       | 3.70       | 0.11       | 0.00       | 0.15      |
| - 75% Load                 | 0.12       | 3.86       | 0.12       | 0.00       | 0.15      |
| - 50% Load                 | 0.09       | 4.86       | 0.15       | 0.00       | 0.15      |
| 10% Load                   | 0.13       | 8.82       | 0.26       | 0.00       | 0.1       |
| 2800 rpm - 100% Load       | 0.21       | 3.31       | 0.10       | 0.00       | 0.1       |
| - 75% Load                 | 0.15       | 3.77       | 0.11       | 0.00       | 0.1       |
| - 50% Load                 | 0.10       | 5.75       | 0.17       | 0.00       | 0.1       |
| - Idle                     | 0.22       | 7.21       | 0.22       | 0.00       | 0.15      |
| Weighted 8 Mode (g/bhp-hr) | 0.15       | 5.11       | 0.15       |            |           |
| Weighted 8 Mode (g/kw-hr)  | 0.20       | 6.85       | 0.21       |            |           |

30% Hydrogen in 8.4L CTI-Designed Engine



## **NOx and Efficiency Comparison**

| Engine Type    | Efficiency | NOx       |
|----------------|------------|-----------|
|                |            | (g/hp-hr) |
| John Deere-CNG | 38.1%      | 10.42     |
| CTI-HCNG       | 38.3%      | 0.15      |



## **Interactions and Collaborations**

- Hess Microgen a subsidiary of Hess Oil, cash co-funded (60k) cylinder head development for Daewoo 11L engine, in-kind cost share included 2 natural gas engines and parts, is USA distributor for NG Daewoo engines
- Gas Research Institute: Cost shared the development of CTI-designed HCNG engine (180k)
- Daewoo Heavy Industries: Technical support, engine control electronics, warranty for HCNG engines



## **Reviewers' Comments**

- Basing HCNG bus engine on custom made parts for racing applications not an appropriate approach
  - Have committed to using a larger displacement engine designed for transit bus and other heavy duty transportation applications
- The cost of converting light-duty vehicles is too high
  - Newest design significantly reduces cost by utilizing the existing OEM computer and catalyst system



## **Future Plans**

#### Remainder of FY 2004:

- Complete testing and evaluation of 11L Daewoo engine
- Convert nine additional light-duty vehicles for the City of Las Vegas
- Update control strategies for CTI-engined bus

#### • FY 2005:

- Convert five City of Las Vegas buses with dedicated 11L
   HCNG engine
- Convert additional light-duty vehicles for the City of Las Vegas



## **Safety**

- For 30% hydrogen mixtures in IC engines
  - Treat the fuel as if natural gas
    - Use natural gas rated equipment (solenoids, etc.)
    - Use natural gas compressors
      - No deleterious effects noticed in 15 years of usage
- For 100% hydrogen in IC engines
  - Use only hydrogen rated equipment
  - Storage tank area vented
  - Engine compartment vented (hood louvers)
  - No safety-related incidents