Fuel Cell Powered Underground Mine Loader Vehicle
DE-FC36-01GO11095

David L. Barnes
Vehicle Projects LLC
27 May 2004
Objectives

Project Objectives

• Develop a metal-hydride, fuelcell-powered mine loader equivalent to a Caterpillar-Elphinstone R1300.

• Evaluate the vehicle in an underground mine in Nevada

Past Year Objectives

• Complete Reports Including:
 – Demonstration of an Electrolysis System for Fuelcell Mining Vehicles
 – Best Methods of Hydrogen Transfer
 – Operating Costs of Hydrogen Production
 – Ventilation Benefit Analysis for Canadian Mines
 – Cost Benefit Analysis of US Underground Mines
 – Capital and Recurring Cost Benefit Analysis for Canadian Mines
Objectives – Continued

Past Year Objectives – con’t

• Determine Traction Motor
 – Induction versus Brushless Permanent Magnet (BPM)
• Determine Battery-Hybrid Configuration
 – Sizing of batteries to support duty cycle
• Determine Metal-Hydride Amount and Configuration
 – Weight limitation
• Complete Engineering Design
Budget

<table>
<thead>
<tr>
<th>Phase</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>$926,670</td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td>$3,165,400</td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td>$4,525,303</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>$8,617,373</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total DOE Funds</td>
<td>$4,239,198</td>
<td>49.2%</td>
</tr>
<tr>
<td>Total NRCan Funds</td>
<td>$599,500</td>
<td>7.0%</td>
</tr>
<tr>
<td>Placer Dome Funds</td>
<td>$225,000</td>
<td>2.6%</td>
</tr>
<tr>
<td>Newmont Mining Funds</td>
<td>$100,000</td>
<td>1.2%</td>
</tr>
<tr>
<td>Total In-Kind Cost Share:</td>
<td>$3,453,675</td>
<td>40.0%</td>
</tr>
</tbody>
</table>

FY04 DOE Funds	$1,550,000	46.7%
FY04 Contractor Funds	$1,770,000	53.3%
FY04 Total:	**$3,320,000**	
Technical Barriers and Targets

- DOE Technical Barriers for Technology Validation
 - A. Vehicles
 Demonstration of complete system
 - B. Storage
 On-board metal-hydride storage
 - C. Hydrogen Refueling Infrastructure
 On-site hydrogen production by electrolysis
Approach

- Perform cost-benefit analysis
- Determine operational duty cycle
- Conceptual design
- Detailed engineering design
- Risk assessment
- Fabricate subsystems
- Vehicle integration and test
- Demonstration of vehicle underground
Project Safety

- Risk assessment to identify operational safety and health risks
- Individual failure mode and effects analysis (FMEA) on subassemblies
- Regulatory review including MSHA acceptance
- Lessons learned from DOE Fuelcell-Powered Underground Mine Locomotive Project Risk Assessment
Project Timeline

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01 – 2/03</td>
<td>2/03 – 3/04</td>
<td>3/04 – 12/05</td>
</tr>
</tbody>
</table>

1. **Phase 1 - Cost Benefit Analysis and Preliminary Design**
 - Demonstrate electrolyzer refueling station

2. **Phase 2 – Detailed Engineering Design**
 - Receive R1300 diesel loader
 - Select battery-hybrid configuration and regenerative braking
 - Receive 87 kW gross continuous fuelcell stacks

3. **Phase 3 – Fabrication, Integration, and Demonstration**
 - Deliver 150 kW battery-fuelcell hybrid powerplant
 - Deliver metal-hydride storage (15kg H₂)
 - Vehicle integration and test
 - Underground demonstration (3 mines)
Technical Accomplishments/Progress

Detailed design includes:

- Fuelcell-battery hybrid powerplant
- 70 kW continuous, 140 kW peak (net)
- Removable metal-hydride storage
- Regenerative braking
- 340 kW (450 hp) DC BPM traction motor
- Separate 100 kW hydraulic BPM motor
Technical Accomplishments/Progress

R1300 Duty Cycle

Power - kW

Energy - kW-hr

Time - sec

Total Power
Job Mean Power
Mean Kilowatts
Energy

Muck
Tram Level
Tram up 15%
Tram Level
Dump
Tram Level
Tram Down 15%
Tram Level

0.0
1.0
2.0
3.0
4.0
5.0
6.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0

0 50 100 150 200 250 300 350 400

200 meters 100 meters 200 meters 100 meters

Copyright © 2004 by Vehicle Projects LLC
Technical Accomplishments/Progress

- 87 kW gross (total)
- 290 V, 300 A full load
- Air pressure 2.0 bara
- H₂ pressure 2.2 bara
- Air stoichiometry 2.0
- Operating temp 60-75° C
- Air RH = 80-100% @ 70° C
- External air humidification
- Fuel loop dead-end mode
- Weight 280 kg
- Volume 220 L

Fuelcell Stacks Manufactured by Nuvera Fuel Cells Inc.
Technical Accomplishments/Progress

Fuel cell stacks bench tested at AeroVironment Inc.

Photo Courtesy Vehicle Projects LLC
Technical Accomplishments/Progress

- DAQ monitors all 402 FC cells
- 112 NiMH batteries, H$_2$O cooled
- Stack full-load 290 V, 300 A (gross)
• Battery configuration
 – Cobasys (formerly Ovonics) NiMH batteries
 – Single battery rated at 12 V, 8.5 AH
 – 56 in series of 2 each in parallel
 – Module rated at 672 V, 17 AH, 11.42 kWh nominal
 – Maximum battery power up to 2 minutes will provide additional 65 – 70 kW
Technical Accomplishments/Progress

Motor torque requirements (N*m) (125kW)

- Required Motor torque (N*m)
- Max rated motor torque (N*m)

125kW constant power region (800 to 3600 rpm)
Assume battery is cycled from 20 to 80% during each cycle. 80% leaves head-room for regen braking.
Interactions and Collaborations

Engineering and Manufacturing

- AeroVironment Inc. - Balance of Plant
- Caterpillar Inc. - Vehicle Integration
- Caterpillar-Elphinstone - R1300 LHD Loader
- DRS-Technologies - Traction Motor
- HERA Hydrogen Storage - Metal-Hydride Storage
- Modine Manufacturing Co. - Heating and Cooling
- Nuvera Fuel Cells Inc. - Fuelcell Stacks
- Stuart Energy - Hydrogen Refueling Station
Interactions and Collaborations

Engineering and Consulting

- Hatch: Risk Assessment, Regulatory
- Placer Dome Technical Services: End-User Oversight
- Southwest Research Institute: Duty Cycle / Energy Modeling
- WSMS: Hydrogen Risk Analysis

Academia

- University Nevada – Reno: Ventilation Evaluation
- Carleton University: Software Simulation
Interactions and Collaborations

Government

- CANMET (Canadian) Tech. Transfer, Demo Oversight
- MSHA Regulatory Oversight

End-Users

- Agnico-Eagle Mines Ltd. Mine Demonstration
- Newmont Mining Corporation Mine Demonstration
- Placer Dome Ltd. Mine Demonstration
Responses to Previous Year
Reviewer’s Comments

Project not presented last year
Future Work

• Remainder of FY 2003
 – Fabrication/Assembly of Fuelcell Powerplant, Metal-Hydride Storage
 – Loader Teardown and Preparation
 – Test Traction Motor and Reduction Gear
 – On-going Risk Assessment and Regulatory Review

• FY 2004
 – Vehicle Integration
 – Vehicle Commissioning
 – Complete Risk Analysis and Regulatory Review
 – Underground Mine Demonstrations (3 mines)