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OverviewOverview

Timeline
• Project started: 09/30/2004
• Project ends:  11/30/2006
• Percent completed: 25% 

Budget
• Total budget funding

– DOE        $1,200k
– Industry  $   300k

• Funding received in FY04 
$150k

• Funding for FY05  $690k 

Barriers
Hydrogen generation by water electrolysis

• G – Capital cost
– Low-cost, durable high-

temperature materials 
development

– Lower operating temperature 

Subcontractors
• 1. University of Missouri-Rolla: 

Dr. H. Anderson, Dr. X. Zhou
• 2.  Aker Industries, Inc.:

Dr. G. Benson
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ObjectiveObjective

To develop a composite/hybrid planar 1kW SOFEC-SOFC 
stack generating both hydrogen and electricity either from 
distributed natural gas or biogas fuel.  The project will 
focus on material research, stack design & fabrication, and 
verification.

• Anode-supported cell development
– Anode optimization
– Electrocatalytically & chemically stable cathode in 

reducing/oxidizing atmosphere

• Cell/stack design, test, & verification
– Button cell
– Short stack proof-of-concept
– 1 kW stack demonstration
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ApproachApproach
To replace the external electrical energy needed to electrolyze steam by a chemical energy 
directly from fuels    

Fossil Energy / Renewable Energy

Electricity

Electrolysis (Hot Elly)

Hydrogen Production
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ApproachApproach

Concept of the solid oxide fuel-fed electrolysis cell (SOFEC)*

• Cathode:  Steam reduction
pure H2 evolution

• Anode:     Fuel oxidation  
depolarized, chemical 
energy to replace 
electrical energy

• Extra electrical energy is needed 
in order to increase hydrogen 
production rate
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*: H.S. Spacil and C.S. Tedmon, J. Electrochem. Soc., 116, 1618 (1969)
A.Q. Pham, H. Wallman, and R.S. Glass, US Patent No. 6051125 (2000)  
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ApproachApproach

 
 

Current flow

Steam channel
Cathode 
Electrolyte 
Anode 

Fuel channel

Air channel 
Cathode 
Electrolyte 
Anode 

Fuel channel

SOFEC 
 

Hydrogen 
production 

SOFC 
 

Electricity 
generation 

• Fuel, steam, air

• Pure H2 & e–

• Same fuel for SOFC 
& SOFEC

• SOFC provides 
power to SOFEC

• SOFEC generates H2

• Better thermal 
management

Concept of the composite/hybrid SOFC-SOFEC stack generating both hydrogen and electricity from the natural gas
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Technical AccomplishmentsTechnical Accomplishments

Anode-supported cell development – anode w/ electrolyte

• Objective:
Increase anode porosity and decrease thickness to minimize concentration 
polarization
Develop anodes with improved mechanical and thermo-mechanical properties
Fabricate anode-supported cell with defect-free thin electrolyte layer

• Approach: 
Vary composition and microstructure of NiO + YSZ anodes
Vary pore-former to adjust porosity
Improve quality control
DIR (100%) capability at 700-850 oC

• Issues:
Trade-off between strength and porosity/thickness
Property measurements at high temperatures and in reducing environment
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Technical AccomplishmentsTechnical Accomplishments

Electrolyte

Cathode Current 
Collector

Anode Support

Cathode Interlayer

Anode Interlayer

• Anode – nickel-zirconia cermet, -- 0.5~0.6 mm thick
• Electrolyte – yttria-stabilized zirconia (YSZ), -- 10~20 µm thick
• Cathode – conducting ceramic/composite, -- 40~60 µm thick
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Technical AccomplishmentsTechnical Accomplishments
Anode-supported button cell performance operating in SOFC mode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Current density(A/cm2)

V
ol

ta
ge

 (V
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 d

en
si

ty
, W

/c
m

2

 800 oC  750 oC
700 oC 650 oC

0.13 Ωcm2 

0.16 Ωcm2 

0.24 Ωcm2 

0.45 Ωcm2 

• 1” button cell

• Active area is 2cm2

• Tested @ 650 – 800 °C

• Air flow rate @ 550 ml/min

• H2 flow rate @ 140 ml/min
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Technical AccomplishmentsTechnical Accomplishments

• Scaled up from button cell to 2”x2” cell w/ 32cm2 active area 
• 4-cell SOFC stack
• Tested @ 800 °C, air and hydrogen
• Fuel utilization @ 40%
• Higher porosity and thinner anode decreases concentration 

polarization at high current densities and high fuel utilizations

1.6”

2”x2” 16-cell
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Technical AccomplishmentsTechnical Accomplishments

• 2”x2” 5-cell stack 

• Advanced anode

• Tested @ 800oC

• Air and hydrogen

• Fuel utilization @ 60%  

• Oxidant utilization @ 
50%

SOFC Stack Operated with Different Fuels
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Technical AccomplishmentsTechnical Accomplishments

• Scaled up to 4”x4” 10-cell stack w/ 92cm2 active area

• Tested @ 800oC

• Steam to carbon ratio @ 2:1

• Fuel utilization @ 40%

• Oxidant utilization @ 40%  

SOFC Stack Operation with Methane DIR (100%)
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Technical AccomplishmentsTechnical Accomplishments
Cathode development for SOFEC
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• Cathode materials are electrocatalytically and chemically stable in both reducing and oxidizing atmospheres
• Candidates: composite cathode, perovskite cathode (w or w/o infiltrated electro-active material)
• Cathode functional layer optimization
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Technical AccomplishmentsTechnical Accomplishments
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SOFC/SOFEC test rig setup diagram
Capable of operating in both the SOFC and SOFEC modes under various fuel condition
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Technical AccomplishmentsTechnical Accomplishments
Button cell SOFC/SOFEC test verification

Fixture exploded view Test rig setup
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Technical AccomplishmentsTechnical Accomplishments
• Button cell

• Anode-supported

• Active area: 2cm2

• Tested @ 800oC

Cell Operation in SOFC & SOFEC Mode
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• In the optimized SOFC, MSRI successfully reduced the ASR to less than 0.2Ωcm2

• Efforts will be devoted to develop materials/microstructures so that the ASR is low in both SOFC and SOFEC modes
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Technical AccomplishmentsTechnical Accomplishments
Cathode improvement – operation in SOFEC mode
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• Button cell

• Anode-supported

• Active area: 2cm2

• Tested @ 800oC
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Future WorkFuture Work

• Remainder of FY05
• Further implementation of quality assurance in cell fabrication
• Newly developed cathode verification on single cell level
• Cell improvement (reduce ASR)
• Single cell reliability testing (long-term, SOFEC/SOFC oscillation)
• Stack design and machining
• Short stack testing – proof-of-concept

• FY06
• BOP cost analysis
• Stack modeling to optimize fluid flow and thermal management
• Stack design optimization
• Long-term and degradation test
• Thermal cycling test in short stack
• 1 kW stack testing
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Hydrogen SafetyHydrogen Safety

• The most significant hydrogen hazard associated with this 
project is:

• having a leak from the hydrogen storage tanks or from the testing 
setup that may cause an explosion. 

• Our approach to deal with this hazard is:
• all of the hydrogen that is on site is stored in qualified pressure 

vessels and is located in a secluded area away from ignition 
sources, oxidants and other chemicals.  All of the hydrogen pipe
lines have been leak tested and are rated for the operating 
pressures.  All testing setups are located under ventilation hoods 
that are rated at 3000 CFM.
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