ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO$_2$ SEPARATION IN A SINGLE-STAGE REACTOR

Prof. Liang-Shih Fan
Dr. Himanshu Gupta
Mahesh V. Iyer
Bartev Sakadjian

Department of Chemical and Biomolecular Engineering
The Ohio State University

May 24, 2005

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- **Project start date:** Oct 2003
- **Project end date:** Sept 2005
- **Percent complete:** 50%

Barriers
Technical Target:
- Cost reduction of H₂ production from fossil fuels. For natural gas sources
 - $3.00/ggeH₂ (by 2005)
 - $1.50/ggeH₂ (by 2010)

Technical Barriers:
- Cost effective CO₂ avoidance
- Reduction in impurities (CO, H₂S)
- Selectivity towards H₂ capture
- Desired Operating Temp range
- Cost of H₂ production

Budget
- **Total project funding:** $501,300
 - **DOE share:** $399,713
 - **Contractor share:** $101,587
- **Funding for FY04:** $160,000
- **Funding for FY05:** $200,000

Partners
Ohio State University
Project Objectives

To assist DOE in the development of hydrogen production technologies by maximizing H₂ production from fossil fuels

- To develop a high temperature reaction based process from syn gas (CO + H₂) which:
 - Maximizes H₂ production at high temperature & pressure (current year)
 - Maximizes H₂ purity by enhancing water-gas-shift reaction
 - Creates a sequestration ready CO₂ stream

- To identify process conditions for maximizing CaO reactivity
 - Thermodynamic analyses for optimizing carbonation, hydration and sulfidation
 - Testing of mesoporous calcium sorbents
 - Optimizing carbonation and calcination reactions (current year)
 - Multicyclic testing (current year)
Overall Technical Approach

- In-situ CO$_2$ removal from the Water gas mixture
- Drive the equilibrium limited WGS reaction forward

✓ Maximize H$_2$ production
✓ High T/P/Purity H$_2$ possible
✓ Reduce Steam consumption
✓ Remove CO and CO$_2$ to ppm levels
✓ Integrated CO$_2$ separation making this H$_2$ Production process CO$_2$ sequestration ready as well
✓ In membrane reactors, H$_2$ production limited by WGS catalysis and not H$_2$ diffusion

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]
Approach: Experimental

• Integral bed for simultaneous WGS and Carbonation
 – Breakthrough studies for extent/purity of hydrogen production
 – Sorbent reactivity
 – Catalyst activity (blank testing)
 – Catalyst deactivation avoidance

• MSB-TGA testing
 – Extent of carbonation (High pressures)
 – Multicyclic carbonation-calcination reaction testing
 – Competing carbonation/sulfidation reactions

• Sub-atmospheric calcination
 – Vacuum calcination
 – Steam calcination
Carbonation Calcination Reaction System (CCR)

Regenerable metal oxides
- Carbonation
 \[\text{MO} + \text{CO}_2 \rightarrow \text{MCO}_3 \]
- Calcination
 \[\text{MCO}_3 \rightarrow \text{MO} + \text{CO}_2 \]

Equilibrium \(P_{\text{CO}_2} \) for carbonation (atm)

- 0.0001
- 0.001
- 0.01
- 0.1
- 1

Carbonation Calcination

\[\text{CaO} + \text{CO}_2 \leftrightarrow \text{CaCO}_3 \]

Computed from HSC Chemistry v 5.0

\(^a\)15.3% MEA, \(^b\)AC, 1393 m\(^2\)/g, \(^c\)AC: Norit R1, \(^d\)Silica Gel, \(^e\)AC 1018 m\(^2\)/g

\(^a\)Song et al., 1996; \(^b\)Heuchel et al., 1999; \(^c\)Dreisbach et al., 1999; \(^d\)Zhang et al., 1998; \(^e\)Sarkar and Bose, 1997
Reaction Schemes

Reaction phase:

WGSR: \(CO + H_2O \rightarrow CO_2 + H_2 \)

Carbonation: \(CaO + CO_2 \rightarrow CaCO_3 \)

Regeneration phase:

Calcination: \(CaCO_3 \rightarrow CaO + CO_2 \)

Parasitic Reactions:

Hydration: \(CaO + H_2O \rightarrow Ca(OH)_2 \)

Sulfidation: \(CaO + H_2S \rightarrow CaS + H_2O \)

- High Steam/CO
- \(H_2/CO \) ratio can be improved
- But can never maximize \(H_2 \) production
- Further CO cleanup required for PEM fuel Cells (ppm levels)
Thermodynamic Analyses

$\text{CaO} + \text{CO}_2 \rightleftharpoons \text{CaCO}_3$

$\text{CaO} + \text{H}_2\text{O} \rightleftharpoons \text{Ca(OH)}_2$

Equilibrium Temperature for H$_2$O (°C)

Equilibrium Partial Pressure for H$_2$O (atm)

Equilibrium Temperature for CO$_2$ (°C)

Equilibrium Partial Pressure for CO$_2$ (atm)
Fuel Gas Compositions

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Moving Bed, dry</th>
<th>Moving Bed slagging</th>
<th>Fluidized Bed</th>
<th>Entrained Flow, slurry</th>
<th>Entrained Flow, dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>air</td>
<td>Oxygen</td>
<td>Oxygen</td>
<td>Oxygen</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Fuel</td>
<td>Sub Bituminous</td>
<td>Bituminous</td>
<td>Lignite</td>
<td>Bituminous</td>
<td>Bituminous</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>295</td>
<td>465</td>
<td>145</td>
<td>615</td>
<td>365</td>
</tr>
<tr>
<td>CO</td>
<td>17.4</td>
<td>46</td>
<td>48.2</td>
<td>41</td>
<td>60.3</td>
</tr>
<tr>
<td>H2</td>
<td>23.3</td>
<td>26.4</td>
<td>30.6</td>
<td>29.8</td>
<td>30</td>
</tr>
<tr>
<td>CO2</td>
<td>14.8</td>
<td>2.9</td>
<td>8.2</td>
<td>10.2</td>
<td>1.6</td>
</tr>
<tr>
<td>H2O</td>
<td>...</td>
<td>16.3</td>
<td>9.1</td>
<td>17.1</td>
<td>2</td>
</tr>
<tr>
<td>N2</td>
<td>38.5</td>
<td>2.8</td>
<td>0.7</td>
<td>0.8</td>
<td>4.7</td>
</tr>
<tr>
<td>CH4+ HCs</td>
<td>5.8</td>
<td>4.2</td>
<td>2.8</td>
<td>0.3</td>
<td>...</td>
</tr>
<tr>
<td>H2S + COS</td>
<td>0.2</td>
<td>1.1</td>
<td>0.4</td>
<td>1.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- Typical gasifier P_{CO_2}: 0.4 - 4.3 atm
- Equilibrium Temperature: 830 - 1000 °C
- Operate below T_{eq} for carbonation to occur
- Typical gasifier P_{H_2O}: 12 - 20 atm
- Equilibrium Temperatures: 550 - 575°C
- Operate above T_{eq} to prevent hydration of CaO
Solids loading: 2.56 wt%
CO_2 flow rate: 5 scfh

CO_3^{2-} and HCO_3^{-} ions
$\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3$

*Agnihotri et al., (1999)
Optimization of Sorbent Morphology

Optimization of Surface area and Zeta potential\(^1\)

Comparison of PSD of PCC with other natural lime based sorbents\(^2\)

\(^1\text{Gupta and Fan, (2002); } \ ^2\text{Gupta et al (2004)}\)
Effect of Initial Sorbent Morphology (carbonation of CaO sorbents)

![Table of BET surface area and PV values](image)

- **Name** | **BET SA (m²/g)** | **PV (cc/g)**
 - LC
 - LC-CaO | 17.79 | 0.078
 - Dolomite | 1.822 | 0.004
 - FCD-CaO | 29.85 | 0.08
 - PCC | 36.8 | 0.11
 - PCC-CaO | 12.79 | 0.027

- **Two-regime heterogeneous Gas-Solid reaction**
 - Rapid kinetic regime
 - Slow product layer diffusion regime

Carbonation in TGA at 700 °C under 100 % CO₂
Comparison of High Temperature Sorbents

Number of cycles

Wt % CO₂ capture (g-CO₂ / g-sorbent)

PCCᵃ
LCᵃ
Li₄SiO₄ᵇ
PbOᶜ
CaOᶜ
CaO (microns)ᵈ
CaO (sub-microns)ᶠ

dolomiteᵉ

Experimental Setup

Combined WGSR and Carbonation

Fixed Bed of catalyst and CaO mixture
- Süd-Chemie: HTS catalyst
- Fe$_2$O$_3$ supported on chromium oxide

Sorbents
- PCC (tailored)
- Linwood hydrate (natural)

- 1500 sccm
- 3 % CO
- Steam/CO = 3
- 600 °C
WGS Catalyst Testing w/o Sorbent

\[K_{WGS} = \frac{[CO_2][H_2]}{[CO][H_2O]} \]

Thermodynamic equilibrium

CO Conversion

Partial Pressure Ratios

CO Conversion (%)

Reaction Temperature

0.5 g HTS catalyst, 3% CO H\textsubscript{2}O/CO ratio = 3, Total flow = 1.5 slpm
Performance of Linwood Hydrate

T = 600 °C, 3% CO, 9% H₂O, Total flow = 1.5 slpm

100% conversion: < 10 secs
90% conversion: 900 secs
Performance of PCC

- 100% conversion: 240 secs (4 min)
- 90% conversion: 1000 secs (16.5 min)
- Final breakthrough: 2500 secs (42 min)

\[T = 600 \, ^\circ\text{C}, \, 3\% \, \text{CO}, \, 9\% \, \text{H2O}, \, \text{Total flow} = 1.5 \, \text{slpm} \]
Comparison of PCC and LH

T = 600 °C, 3% CO, 9% H2O, Total flow = 1.5 slpm
Sub-atmospheric Calcination

Schematic diagram of the calciner reactor setup

- Vacuum Pump 1
- Diluent Gas
- Vacuum Pump 2
- Vent
- Data Acquisition System (DAS)
- Ceramic Tube Reactor
- Rotary Seal
- Rotary Supports
- Sorbent Calcination zone
- Reactor Baffles
- Furnace
- Motor Drive
- Rotary Supports
- NDIR CO₂ Analyzer (0-2500 ppm)
- NDIR CO₂ Analyzer (0-20 %)
- Pressure Gauge 1
- Pressure Gauge 2
- Vacuum Pump 2
Sub-atmospheric Calcination

- Effect of vacuum on calcination rate
- Higher vacuum favors the rate
- PCC calcines faster than LC
- Lower calcination temperature favors sorbent morphology

- Effect of diluent gas flow rate
- 0-1000ml/min of He
- Calcination of 10g LC
- 28”Hg vacuum
- T=880 °C
Future Work (FY 2005)

MSB Testing

– Multicyclical Testing that includes:
 • Carbonation
 – Simulated WG mixtures
 – Effect of Pressure
 • Calcination
 – N$_2$/H$_2$O/CO$_2$/Vacuum combination

– Effect of H$_2$S:
 • Competing sulfidation and carbonation
 • Effect of steam to prevent sulfidation
 • Optimization of X_{CO_2}/X_{H2S}
Future Work (FY 2005)

• **Breakthrough Testing**

 – **Hydrogen Generation**

 • Purity of hydrogen
 – Thermal Conductivity
 – Density
 – Specific Heat

 • CO exit concentration
 • CO\textsubscript{2} exit concentration

• **Multicyclic Catalyst Performance**

 – Catalyst maintained under inert gas

 • No exposure to CO\textsubscript{2}, H\textsubscript{2}O
Future Work (FY 2005)

- **H₂ Enriched Gas Outlet**
- **SynGas Inlet**

CLOSED

- Vacuum
- Nitrogen
- Vacuum
- Nitrogen
- Vacuum

Calcium Oxide

WGS Catalyst
Publications and Presentations

Presentations:

Gupta, H; Iyer, M.V.; Sakadjian, B.B.; and Fan, L.-S., “The Role of CaO in Maximizing Hydrogen Production from Fossil Fuels” Fuel Cell Seminar, San Antonio, TX, 2004

Publications:

Hydrogen Safety

Most significant hydrogen hazard associated with this project is

- The experiments involved in this project use a gas mixture consisting of CO, H₂, H₂O, H₂S, CO₂ and N₂.
- High temperatures (100-700°C) and pressure (1-20 bars)
- The most significant hydrogen hazard associated with this project is the combustion/explosion of hydrogen inside and/or outside the reactor. In addition, carbon monoxide could pose a similar safety hazard.
Hydrogen Safety

Our approach to deal with this hazard is

- Minimize gas flow rates and reactor footprint
- Double sash well-ventilated walk-in hood (81 fpm)
- 13 ppmv Hydrogen in the vicinity of reactor
- Manual controls are outside the hood