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Overview

Timeline Barriers

Project start date: Oct 2003 Technical Target:

Cost reduction of H, production

Project end date: Sept 2005 from fossil fuels. For natural gas
Percent complete: 50 % sou;c;.- 20/
— .00/ggeH, (by 2005)

— $1.50/ggeH, (by 2010)

Budget Technical Barriers:

Cost effective CO, avoidance
Total project funding: $501,300 = Reduction in impurities (CO, H,S)
« Selectivity towards H, capture
— DOE share: $ 399,713 + Desired Operating Temp range
— Contractor share: $ 101,587 - Cost of H, production
Funding for FY04: $160,000 Partners

Funding for FY05: $200,000 Ohio State University




Project Objectives

To assist DOE in the development of hydrogen production
technologies by maximizing H, production from fossil fuels

To develop a high temperature reaction based process from
syn gas (CO + H,) which:
— Maximizes H, production at high temperature & pressure (current year)
— Maximizes H, purity by enhancing water-gas-shift reaction

— Creates a sequestration ready CO, stream

To identify process conditions for maximizing CaO reactivity

— Thermodynamic analyses for optimizing carbonation, hydration and
sulfidation

— Testing of mesoporous calcium sorbents
— Optimizing carbonation and calcination reactions (current year)

— Multicyclic testing (current year)




Overall Technical Approach

» In-situ CO, removal from the Water gas mixture

» Drive the equilibrium limited WGS reaction forward

v Maximize H, production CO+H,0 > +H,
v High T/P/Purity H, possible
v Reduce Steam consumption

Removed

v Remove CO and CO, to ppm levels

v Integrated CO, separation making this H,
Production process CO, sequestration
ready as well

v" In membrane reactors, H, production limited
by WGS catalysis and not H, diffusion




Approach: Experimental

* Integral bed for simultaneous WGS and Carbonation

— Breakthrough studies for extent/purity of hydrogen
production

— Sorbent reactivity
— Catalyst activity (blank testing)
— Catalyst deactivation avoidance

« MSB-TGA testing
— Extent of carbonation (High pressures)
— Multicyclic carbonation-calcination reaction testing
— Competing carbonation/sulfidation reactions

 Sub-atmospheric calcination
— Vacuum calcination
— Steam calcination 5




Carbonation Calcination Reaction System (CCR)

CaO + CO,«=> CaCO,

Equilibrium P, for carbonation
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Reaction Schemes

Reaction phase:
WGSR: CO +H,0-> CO, +H,
Carbonation: CaO + CO, - CaCoO,

Regeneration phase:

Calcination: CaCO,; - CaO +CO,
Parasitic Reactions:

Hydration: CaO + H,0 - Ca(OH),
Sulfidation: CaO +H,S - CaS +H,0

» High Steam/CO

» H,/CO ratio can be improved

» But can never maximize H, production

» Further CO cleanup required for PEM fuel Cells (ppm levels) 7




Overall integration scheme
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Thermodynamic Analyses

CaO + CO,«==> CaCO, CaO+ H,0 <==> Ca(OH),

Equilibrium Temperature for CO, (°C)
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Fuel Gas Compositions

Moving Bed, dry | Moving Bed slagging | Fluidized Bed | Entrained Flow, slurry | Entrained Flow, dry
Oxidant air Oxygen Oxygen Oxygen Oxygen
Fuel Sub Bituminous Bituminous Lignite Bituminous Bituminous
Pressure (psi) 295 465 145 615 365
cO 17.4 46 48.2 41 60.3
H2 23.3 26.4 30.6 29.8 30
CO2 14.8 2.9 8.2 10.2 1.6
H20 16.3 9.1 171 2
N2 38.5 2.8 0.7 0.8 4.7
CH4+ HCs 5.8 4.2 2.8 0.3
H2S + COS 0.2 1.1 0.4 1.1 1.3

» Typical gasifier P.q,: 0.4 - 4.3 atm

» Equilibrium Temperature: 830 - 1000 °C

» Operate below T, for carbonation to occur

» Typical gasifier Py,5: 12 - 20 atm

» Equilibrium Temperatures: 550 - 575°C

» Operate above T, to prevent hydration of CaO

10




PCC Synthesis’
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Optimization of Sorbent Morphology
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Effect of Initial Sorbent Morphology
(carbonation of CaO sorbents)

1

Name |BET SA (m2/g)|PV (cc/g)]
LC 1.064 0.003 | o8
LC-CaO 17.79 0.078 i
Dolomite 1.822 0.004 |
FCD-CaO 29.85 0.08 |3 |
PCC 36.8 0.11 |[& |
PCC-Ca0O | 1279 0.027 | °*
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+ LC-CaO (650)
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Comparison of High Temperature Sorbents
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Experimental Setup
Combined WGSR and Carbonation

Fixed Bed of catalyst
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WGS Catalyst Testing w/o Sorbent
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Performance of Linwood Hydrate

CO conversion
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Performance of PCC

conversion
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Comparison of PCC and LH
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Sub-atmospheric Calcination

Schematic diagram of the calciner reactor setup
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Sub-atmospheric Calcination
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Future Work (FY 2005)

MSB Testing

—Multicyclical Testing that
includes:
« Carbonation

— Simulated WG mixtures
— Effect of Pressure

 Calcination
— N,/H,0/CO,/Vacuum combination

| —Effect of H,S:

.Ir
Ju s

« Competing sulfidation and
carbonation

« Effect of steam to prevent
sulfidation

» Optimization of X;q,/X};0s
22




Future Work (FY 2005)

 Breakthrough Testing

— Hydrogen Generation
* Purity of hydrogen
— Thermal Conductivity
— Density
— Specific Heat
* CO exit concentration

« CO, exit concentration

* Multicyclic Catalyst Performance

— Catalyst maintained under inert gas
* No exposure to CO,, H,O

23




Future Work

CLOSED
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Publications and Presentations

Presentations:

“‘Enhancing Hydrogen Production With In-Situ CO2 Separation Using CaO/Catalyst Systems” lyer, M., Gupta, H., Sakadjian, B. and
lyer, M. AIChE Annual Tech. Meeting, Austin, TX, 2004.

Gupta, H; lyer, M.V.; Sakadjian, B.B.; and Fan, L.-S., “The Role of CaO in Maximizing Hydrogen Production from Fossil Fuels” Fuel
Cell Seminar, San Antonio, TX, 2004

H. Gupta, M. V. lyer, B. Sakadjian and L.-S. Fan, “Reaction Enhanced Hydrogen Production from Water Gas Mixtures.” 29th
International Technical Conference on Coal Utilization & Fuel Systems, April 17-22, 2004, Clearwater, Florida, USA.

Publications:

Gupta, H; lyer, M.V.; Sakadjian, B.B.; and Fan, L.-S., “The Role of CaO in Maximizing Hydrogen Production from Fossil Fuels”
Proceedings from Fuel Cell Seminar, San Antonio, TX, 2004
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Hydrogen Safety

Most significant hydrogen hazard associated with this
project is
* The experiments involved in this project use a gas
mixture consisting of CO, H,, H,0O, H,S, CO, and N..
« High temperatures (100-700°C) and pressure (1-20
bars)
* The most significant hydrogen hazard associated with
this project is the combustion/explosion of hydrogen
inside and/or outside the reactor. In addition, carbon

monoxide could pose a similar safety hazard.




Hydrogen Safety

Our approach to deal with this hazard is

Minimize gas flow rates and reactor footprint

Double sash well-ventilated walk-in hood (81 fpm)

13 ppmv Hydrogen in the vicinity of reactor

Manual controls are outside the hood
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