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oA Overview

.+ Timeline  Barriers addressed
e Start - Oct. 2005 — Enzyme stability/durability
* End - Sept. 2009 — Oxygen sensitivity

— Light harvesting

Budget
» Total project funding Partners
$1,491,250 « Montana State University

— DOE $1,193,000 e Pleotint LLC
— Contractor $298,250



Overall Project Structure
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Objectives wy
Optimize the hydrogenase stability and electron

transfer

Optimize the semiconductor nano-particle
photocatalysis, oxygen scavenging, and electron
transfer properties of protein nano-cages

Gel/Matrix immobilization and composite
formulation of nano-materials and hydrogenase

Device fabrication for H, production



Approaches -w

Couple Different Catalyst Systems for Light Driven
Hydrogen Generation

Biological catalysts (Hydrogenases)
-stabilization/immobilization
-electron transfer

Nanoparticle Photocatalysts
-light harvesting
-O, scavenging
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. Enzymatic H, Formation 4

Hydrogenase enzymes
Highly active catalysts (9,000 H,/enz/sec)
Utilize MV* as reducing equivalents
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Biological Hydrogen Production
H2 T 2H+ + 26'

Hydrogenase

Peters et al, Science (1998)



L Immobilization

Hydrogenase
o w

Advantages

— Solid Phase — free flow of substrates and products

— Durability — Proteolysis resistance, temperature
stability, pH stability, increased shelf life

Approaches

— Silica oxide Sol-Gel (Tim Elgren)

— Poly(viologen) electro-active polymers (Pleotint
LLC)
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Encapsulation/Immobilization g}

Incorporation of hydrogenase enzymes
into materials to facilitate electron
transfer reactions, provide oxygen
protection, and enhance stability



Procedure for making Sol-Gel hydrogenase

(§ g materials (s
kS @ | Prepared Sol-Gel mixture R 4
z'{_ 2 b 1.57 ml Tetramethyl-ortho-silicate (TMOS)

350 uL H,0
11 . 0.04 M HCI

v

Sonicated solution for 30 min in cold bath
(with degassing)

|

Making Sol-Gel hydrogenase materials

100 uL hydrogenase (100 ug of protein
in 50 mM Tris- HCI pH 8,0) :
100 puL Sol-Gel mixture

v

Polymerization of Sol- Gel material for 3-5 min
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~ Recovery of hydrogenase activity g
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Thermal stability of hydrogenases
encapsulated 1in Sol-Gel materials
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Thermal stability of hydrogenases
encapsulated in Sol-Gel materials
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Nanoparticle synthesis within
the Ferritin Protein Cage

Mn(0)OH Co(O)OH

Fe;0, or yFe,0, Mn,O, Co,0,

TEM of metal oxide
nanoparticles

Ferritin protein cage
24 subunits - 12 nm diam



Protein Cage Photocatalysts
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ferritin (protein cage)

FeOOH
core

Light absorption by ferritin core
(FeOOH) causes charge separation
oxidizes R and reduces M*
catalytically.

Examples:

* Reduction of CrO,* to Cr(IIl) using
tartrate as electron donor (Kim et al., Chem.
Mater., 2002).

» Reduction of Cu(Il) to Cu(0) particles
using citrate as electron donor (Ensign et
al., Inor. Chem., 2004).

Current: use this photocatalytic
system (or an analogue) to

reduce MV?*" to MV** using
sulfite as electron donor.




. Thermodynamics and Kinetics /&t
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» electron transfer from

. . 1 d t.
sulfite to methyl viologen reduction

viologen is | 58032' +MV2+X6%SO42' LMV
thermodynamically
favorable, AG = -48 A catalyst is
kdimol required for
 reduction of methyl b
viologen

viologen by sulfite >
does not normally reduction by
occur (kinetic barrier) sulfite



Photoreduction of Cu(ll)

Fe(O)OH

50 nm
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TETVI of Ferr‘i’tiﬁ_ehcapsulated
Cu nanoparticles

Photoreduction of Cu(ll) to form protein encapsulated Cu° nanoparticles

Very efficient scavenging of O, from the media
2Cue+ O, +4H* —> 2 Cu(ll) + 2H,0



Long-Term Goal — Device for photocatalytic
hydrogen production — composite materials
(nanoparticles and hydrogenase enzymes)
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Future Goals &%y

Development of device prototype
demonstration of light harvesting

Re-optimization

<
Hydrogenase T T T
Optimization _
COT?PQSit? —» Device — Analysis of H, production efficiency
Optimization
Semiconductor ¢ ¢ i
Nanoparticle |
Optimization

Re-optimization



£ @ Hydrogen Safety W

The most significant hydrogen hazard
associated with this project is:

Accidental ignition of hydrogen gas; leading
to injury of personnel and damage to
equipment from both fire and explosive
debris such as: glassware and/or chemicals



A @ Hydrogen Safety i

' Our approach to deal with this hazard is:

Follow lab protocol of wearing safety glasses,
gloves

Keep glove box H, level below 3%
Vent gases in fume hood

Keep away from open flame and flammable
chemicals

Keep quantity of H, production to a minimum
In event of accidental explosion contact

Jeff Shada, Safety and Risk Management,
Advanced Tech Park, 406-994-2711
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