Electrochemical Hydrogen Storage Systems

D.D. Macdonald, J.B. McLafferty, J.C. Tokash
The Pennsylvania State University
May 23, 2005

This presentation does not contain any proprietary or confidential information
Overview

Timeline
Start Date: FY 2005
End Date: FY 2009
New Start

Barriers
Low-cost, energy efficient regeneration processes have not been established.

Budget
DOE: $1,215,637
PSU: $303,909
FY2004: n/a
FY2005: $202,000 (requested)
$165,000 (advanced)

Partners
DOE Center for Excellence in Chemical Hydrogen Storage
Tier 1 Objectives

• To assist our partners, Rohm & Haas and Millenium Cell, in answering this question: Can the electrochemical reduction of metaborate ion to borohydride ion be achieved?
• We will study the fundamental mechanism of this reaction; i.e. determine what each elementary step is in the reaction.
• With the mechanism, we can determine if catalysis may be used to minimize overpotential (energy consumption) and maximize efficiency of borohydride production.
Center Collaborations

• LANL
 • New electrode fabrication
 • Complexation of borate to adjust electrochemical properties
 • Electrocatalyst development
 • Stoichiometric chemical reduction

• PNNL/Alabama
 • Computation of reaction intermediates and energetics

• Rohm & Haas
 • Access to proprietary information on borate electrochemistry
 • Engineering assessment
 • Data mining results
 • PSU electrochemical results

• Millennium Cell
 • Data mining and background information

• UCLA
 • Synthesis and characterization of polyboranes
 • Expertise on chemical reactivity and properties of polyboranes
Tier 1 Technical Approach

• Define reaction mechanism in terms of **elementary** reaction steps
• Determine values for the rate constants and Tafel constants for these reactions. This will be done by optimizing the model on impedance data.
• Manipulate the kinetics of individual steps to enhance the efficiency of borohydride production while minimizing the overpotential.
Tier 1 Background

• Patent literature suggests methods for electrochemical reduction of metaborate (see, for example: Cooper, US Patent 3,734,842, and Amendola, US Patent 6,497,973)

• One open literature article found that patent results could not be reproduced (Gyenge & Oloman, J. Applied Electrochem., 28 (1998), 1147-1151)

• No studies found in any literature on the true mechanism of this reaction
Basic Cell Design
Legend

- **a**: Pd/Ag thimble for H_2 monitoring
- **b**: For monitoring production of B_2H_6
- **c**: N_2 input
- **d**: Working electrode
- **e**: Luggin capillary/ reference electrode
- **f**: CV probe for monitoring of BH_4^-
- **g**: Nafion 117 membrane
- **h**: Counter electrode
Primitive Hydrogenation Model

(1) $H_2O + S + e^- \overset{k_1}{\rightarrow} H - S + OH^-$

(2) $H - S + H_2O + e^- \overset{k_2}{\rightarrow} H_2 + OH^- + S$

(3) $H - S + R \overset{k_3}{\rightarrow} R - H + S$

Fraction of unoccupied sites: $1 - \theta$

Fraction of sites occupied by adsorbed H: θ

Surface concentration of sites: Γ (mol/cm2)
Assumptions and Definitions

- Reaction (3) is one step in the hydrogenation of the B-O or B-H-O substrate – the actual system will be much more complicated and involve a multistep mechanism.
- Reactions (2) and (3) occur in competition.
- Reactions (1) and (2) are electrochemical, so the rate constants may be expressed as:
 \[k = k^o e^{-E/b} \]
- Efficiency for borohydride production may be expressed as:
 \[\eta = \frac{\frac{d[RH]}{dt}}{\left(\frac{d[RH]}{dt} + \frac{d[H_2]}{dt}\right)} = \frac{k_3^o [R]}{k_3^o R + k_2^o e^{-E/b_2}} \leq 1 \]
The Impedance Model: Definitions

- We will make extensive use of Electrochemical Impedance Spectroscopy to study the mechanism.
- Impedance is defined in terms of current and voltage by Ohm’s Law: \[Z = \frac{E}{I} \]
- Admittance is the reciprocal of impedance.
- “Specific” refers to the quantity being normalized to the surface area of the electrode, hence, current density, and not current, will appear in the expression.
- “Faradaic” indicates a process where the current flowing causes a reaction to occur; “non-Faradaic” indicates that the current flowing increases the charge on the electrical double layer. The total impedance (or admittance) will contain terms from both Faradaic and non-Faradaic processes.
Definitions, continued

- Current density: \[|i| = \frac{Fk_1\Gamma(2k_2 + k_3[R])}{k_1 + k_2 + k_3[R]} \]

- Current density is a function of surface coverage (\(\theta \)), voltage (\(E \)), and concentration of species R (\(C \)), so the total differential of current density is:

\[
\delta i = \left(\frac{\partial i}{\partial \theta} \right)_{E,C} \cdot \delta \theta + \left(\frac{\partial i}{\partial E} \right)_{\theta,C} \cdot \delta E + \left(\frac{\partial i}{\partial C} \right)_{E,\theta} \cdot \delta C
\]

- Specific Faradaic Admittance is defined from Ohm’s Law as:

\[
Y_F = \frac{\delta i}{\delta E}
\]
Specific Faradaic Admittance

Solving for the total differential of i, then substituting into the definition of Faradaic Admittance gives:

$$Y_F = \left(\frac{1}{1+a} \right) \left\{ F\Gamma(k_2 - k_1) \cdot \frac{\alpha}{1 + j\tau} - F\Gamma \left[\frac{k_1}{b_1} (1 - \theta) + \left(\frac{k_2}{b_2} \right) \theta \right] \right\}$$

Where:

$$a = \frac{F\Gamma k_1 k_3 (k_1 - k_2)}{(k_1 + k_2 + k_3[R])^2} \cdot \frac{1}{nFD^{1/2} \omega^{1/2} j^{1/2}}$$

$$\alpha = \frac{\theta(k_2/b_2) - (1-\theta)(k_1/b_1)}{k_1 + k_2 + k_3[R]}$$

$$\tau = \frac{\omega}{(k_1 + k_2 + k_3[R])}$$
Total Specific Admittance and Specific Impedance

\[Y_T = Y_F + j \omega C_{dl} \]

Where \(C_{dl} \) is the double layer capacitance. The specific impedance then becomes:

\[Z_T = \frac{1}{Y_T} \]

The double layer capacitance term gives the non-Faradaic contribution to the admittance and impedance expressions.
What do we do with these functions?

• Solve for i as a function of E
• Use with constrained optimization of the model on experimental impedance or admittance data to find optimal values for k’s and b’s
• Use the optimal k’s and b’s to direct the development of effective and efficient electrodes and electrocatalysts within the Center for:
 – Borate reduction
 – Complexed borate reduction
 – Polyborane redox chemistry
Tier 2 Objectives

• To determine the electrochemistry of complex boranes, and devise a reversible hydrogen storage technology based on the borane system.

• To be able to change the number of B-H bonds on each boron atom electrochemically, since boron has many possible oxidation states. By doing so, we hope to safely store hydrogen in the boron/hydrogen system.
Tier 2 Approach

Borane Electrochemistry

- Explore and define the electrochemistry of polyboranes, polyborane anion molten salts, and non-aqueous solutions in contact with hydrogen gas.
- Determine the identities and structures of the polyboranes.
- Resolve kinetic and mechanistic issues, identify reaction products, determine reaction mechanisms and transport parameters.
- Resolve and characterize the thermal decomposition of the hydrides.
Tier 2 Approach

Borane Hydrogenation

• Explore the feasibility of developing a reversible hydrogen storage technology based on the polyborane system.
• Electrodes will be used to induce changes in the formal oxidation state of boron for a reversible hydrogen storage method.
• Explore the kinetics of the hydrogen/electrode reaction on a variety of electrode materials to maximize the cell efficiency.
Tier 2 Approach

• Develop electrochemical reaction models for hydrogen storage in the polyboranes, polyborane anion molten salts and non-aqueous solutions.

• Develop criteria to confirm that the model agrees with the experimental data.

• Optimize the model on electrochemical experimental data.
Acknowledgements

• Rohm and Haas for providing sodium borohydride

• UCLA and LANL for synthesizing polyboranes

• DOE and PSU for funding

• Penn State University for facilities
Electrochemistry of Boron-Hydrogen System

<table>
<thead>
<tr>
<th>Major Milestones/Deliverables</th>
<th>3/05</th>
<th>3/06</th>
<th>3/07</th>
<th>3/08</th>
<th>1/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration of Electrochemical Transformations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practically Useful Oxidation State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Demonstration of Reversible H₂ storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification of Optimal System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrochemical Reduction of $B-O$ to $B-H$

<table>
<thead>
<tr>
<th>Major Milestones/ Deliverables</th>
<th>3/05</th>
<th>3/06</th>
<th>3/07</th>
<th>3/08</th>
<th>1/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration of $B-O$ to $B-H$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction Mechanism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction Kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification of Optimal System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Safety: Most Significant Concerns

• Tier 1: Formation of species such as H_2 and/or B_2H_6 during operation of cell

• Tier 2: Over-pressurization of the reaction vessel
Approaches to Dealing With These Hazards

Tier 1

- Cell will be operated in a fume hood
- Cell designed so that B_2H_6 that may form can be collected and analyzed

Tier 2

- Pressure sensor will be built into the cell
- Rupture disks will be built into the cell
- A blast shield will be installed into the glove box as an extra layer of protection in case of rupture