Underground LH2 Off-Board Hydrogen Storage Technology

> U.S. Department of Energy
2005 Hydrogen Program Review

Mark E. Richards
Gas Technology Institute
25 May 2005

Project ID # STP57

This presentation does not contain any proprietary or confidential information
Overview

> Timeline
 – Task 1
 > Start: May 2005
 > End: Feb 2006
 – Task 2
 > Start: Mar 2006
 > End: Apr 2008

> Barriers addressed
 – Reduce the cost and footprint of hydrogen storage at refueling stations
 > Barrier F: Hydrogen Delivery Infrastructure Storage Costs
 > Barrier H: Storage Tank Materials and Costs

> Budget
 – Total project funding
 > DOE: $968,000
 > Cost share: $245,000
 – FY05: $90,000

> Partners
 – NexGen Fueling Division of Chart Industries
 – BOC Gases
Project Objectives

> Better understand the technical and economic factors related to bulk hydrogen transportation, storage, and dispensing for vehicle applications
> Operating costs and efficiencies of various hydrogen storage methods
> Capability of fueling system to store and effectively deliver H2 to vehicles
> Understand the safety of the fuel storage and delivery system
Technical Approach

> Two tasks
 1. Design analysis and economic modeling
 2. Demonstration to validate analysis and modeling

> Issues to be investigated
 – Economics
 – Safety
 – Ground freezing
 – Effects of soil pressure
 – Effects of tank leakage
 – Tank integrity monitoring
 – LH2 withdrawal
Benefits of Direct Burial

> Decreased land usage/footprint
> Eliminates some potential hazards
 – Vandalism
 – Fire
 – Vehicle impact
> Inherent spill containment
> Direct burial is preferred over vaulted configuration for additional safety
 – Eliminates confined space issues
Prior GTI/GRI Underground LNG Tank Project

- Previous work done in mid-90s on underground LNG tank burial
- Analytical investigation coupled with real-world empirical testing
- Helped lead to greater acceptance of this practice
New LNG Vehicle Fueling Site With Buried Cryogenic Tanks

> Orange County Transit Authority (OCTA)
Project Work Plan

> Task 1: LH2 off-board storage technology analysis
 – 1.1 Design analysis of H2 off-board storage technologies
> Go / no go decision

> Task 2: Off-board LH2 in-ground tank testing and evaluation
 – 2.1 Analytical investigation of buried LH2 tanks
 – 2.2 Experimental facility and test of underground releases
 – 2.3 Equipment and soil instrumentation
 – 2.4 Soil preparation
 – 2.5 LH2 tank tests
LH2 Off-Board Storage Technology Analysis (Task 1)

> Design analysis for:
 – Above- and below-ground compressed H2 storage
 – Above- and below-ground LH2 storage

> Economic analysis to include:
 – Capital cost
 – Operating cost
 – Operational issues
 – Safety elements

> Site issues analysis to include:
 – Site requirements (system footprint, storage capacity, heat gain/boil-off, etc.)
 – Code and standards, permitting issues
Capital and Operational Cost Evaluation (Task 1.1.1)

> Life-cycle cost model for each case (GH2, LH2 above and below ground)
 – Capital costs
 > Site infrastructure, land, equipment, permitting
 – Operation and maintenance costs
 > Energy, maintenance, product loss (venting), safety
 – Task will consult and coordinate with H2A and DOE/Nexant efforts
GTI’s Life-cycle Cost Model

> Includes time- and hours-of-operation-dependent costs and allowances for incentives, salvage value, and income tax effects
> Probabilistic (Monte Carlo) and sensitivity analysis capabilities
Buried LH2 Tank Site Issues Evaluation (Task 1.1.2)

> Site requirements
 – System footprint, H2 storage capacity, heat gain and boil-off rates, piping and fitting requirements and maintainability
 – Codes for vapor dispersion and thermal radiation zones, buffer zones, spill containment and other safety regulations

> Code and standards issues
 – Contact and participation with appropriate organizations (ICC, NFPA, etc.)

> Evaluate local permitting issues for Task 2 (burial of LH2 tank)
Codes and Standards

- Underground LH2 storage allowed in ICC International Fire Code
 - §2209 Hydrogen Motor Fuel-dispensing and Generation Facilities
 - §3204 Cryogenic Fluid Storage
- NFPA 50B does NOT allow underground storage
 - NFPA 55 will combine NFPA 50, 50A, and 50B and will allow underground storage
- NFPA 52 (draft) will allow underground storage
- Code changes commonly take two to three years for adoption by localities
 - Early outreach to local authorities
ICC IFC Requirements

> §2209 contains general H2 fueling station requirements, including
 – Equipment approval/listing, location on property, dispensing, safety precautions (including venting)

> §3204 contains underground LH2 tank requirements, including
 – Separation from other in-ground structures, fill and cover (1' earth, 4" concrete), vacuum jacket corrosion and load protection, vacuum monitoring, etc.
Go / No-Go Decision

> At the conclusion of Task 1 (ten months) a go / no-go decision will be based on:
 – Economic viability of LH2 compared to alternatives (LH2 costs ≤ alternatives)
LH2 In-Ground Storage Tank Testing and Evaluation (Task 2)

> Task 2: Off-board LH2 in-ground tank testing and evaluation
 – 2.1 Analytical investigation of buried LH2 tanks
 > Heat transfer modeling
 – 2.2 Experimental facility and test of underground LH2 tanks
 > Test hydrogen dispersion profiles
 > Evaluate methods of hydrogen leak detection
 – 2.3 Equipment and soil instrumentation
 – 2.4 Soil preparation
 – 2.5 LH2 tank tests
 > Baseline tank heat loss test
 > Soil moisture effect test
 > Supplemental soil heating effects test
 > Analytical evaluation of LH2 tank vacuum loss
Analytical Investigation of Buried LH2 Tanks (Task 2.1)

> Analyze potential freezing of the soil layer adjacent to the buried LH2 tank
 – Model heat transfer from the soil to the LH2 tank (transient finite element analyses)
 > Different soil compositions
 > Depth of tank burial
 > Ambient temperature
 – The model will be verified / updated in Task 2.5 based on field measurements
 – Quantify heat flux rate
 > Consider supplemental heating
Experimental Facility and Test of Underground Releases of LH2 (Task 2.2)

> Construct a scaled test facility
 – Bury a vacuum jacketed pipe to enable the release of LH2 into several test conditions
 > Different soil compositions
 > Dry and moist soil
 > Several depths of release

> Evaluate issues related to underground LH2 release
 – Test hydrogen dispersion profiles
 – Evaluate methods of hydrogen leak detection
Equipment and Soil Instrumentation (Task 2.3)

> Temperature instrumentation of LH2 tank at several locations of exterior and within vapor space of inner tank

> Temperature instrumentation of soil space around tank consistent with analysis of Task 2.1

> Moisture sensors at selected soil locations

> Strain gauges at selected tank and piping locations
Soil Preparation (Task 2.4)

> Two types of soil:
 – Clay fill
 – Sandy fill

> Each end of buried tank will be backfilled with each type of soil

> Apparatus for inserting moisture into the soil to be implemented
LH2 Tank Tests (Task 2.5)

> Baseline tank heat loss test (Task 2.5.1)
 – Determine relief setting and monitor soil and tank conditions for 90 to 120 days

> Soil moisture effect test (Task 2.5.2)
 – Reheat soil to initial conditions of prior task
 – Approach saturated soil moisture level and monitor soil and tank conditions for 90 to 120 days
LH2 Tank Tests (Task 2.5)

> Tank shell heater effects test (Task 2.5.3)
 – Reheat soil to initial conditions of prior task
 – Maintain soil temperature via heating coils on tank exterior
 – Monitor soil and tank conditions for 90 to 120 days

> Evaluation of LH2 tank vacuum loss (Task 2.5.4)
 – Analytical evaluation of updated model
 – Possible test with actual tank
Project Management and Reporting (All Tasks)

> Project management
 – Overall technical, fiscal, and administrative management of the proposed project
 – Preparation of deliverables, reporting of project progress at review meetings
 – Presentation of the research results

> Reporting
 – Status reports (quarterly and annual)
 – Oral presentation
 – Annual participation in DOE meeting, DOE Program Review and USCAR review
Gas Technology Institute

> Independent non-profit R&D organization

> Focus on energy and environmental issues
 – Natural gas and hydrogen emphasis

> Over 40 years experience with hydrogen and 20 years with gaseous vehicle fueling stations
Chart Industries and NexGen

Chart Industries is a leading supplier for the industrial gas and hydrocarbon processing markets.

- Cryogenic equipment used to purify, liquefy, store, and transport gases such as helium, hydrogen, nitrogen, oxygen, and natural gas for further use in industrial, commercial, and scientific applications.

- NexGen Fueling Division meets the needs of natural gas and hydrogen vehicle markets. They supplied over 98% of on-board LNG fuel tanks for transit buses and heavy-duty trucks.