
DOE Fuel Cell Program

Hydrocarbon Membrane
Project: FC7

Chris J. Cornelius, Cy H. Fujimoto, 
Michael A. Hickner

Sandia National Laboratories
Chemical and Biological Technologies

P.O. Box 5800
Albuquerque, NM 87185

May 16th 2006

This presentation does not contain any proprietary or confidential information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.



DOE Fuel Cell Program

Overview
Hydrocarbon Membrane

Timeline
• Start Date: 3/15/05
• End date: 9/30/06
•• Project Completion (FY06): Project Completion (FY06): 50%50%

Budget
• Total project funding

− DOE share: $300K
− Contractor share: $0K

• Funding received in FY05: $150K
•• Funding for FY06: Funding for FY06: $150K$150K

Partners
• Interactions and Collaborations 

Automotive & FC Stack Producer (Independent Testing & DOE Call Partners)
Academia (Virginia Tech, CWRU, Clemson, UK - Jun Jin)

Technical Barriers
BarriersBarriers: A, B, C, D, F, I

• High Temperature 
Membranes  for Distributed 
Power Applications

• Advanced Membrane R&D
• Membrane Materials, 

Components, Processes
• Advanced MEA Meeting 2010 

Targets
• Direct Methanol Fuel Cells
• Auxiliary/Portable Power
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Objectives
Research Program Goals – DOE 2010 Targets

Overall • Membrane Conductivity (0.1, 0.7, & 0.01 S/cm @ Target, RT, -20oC)
• Operating Temperature (<= 120oC & 1.5 kPa abs)
• Catalyst Loading (0.3 g/kW)
• Fuel Cell Performance (400 mA/cm2 and 320 mW/cm2 @ 0.8V)
• Membrane cost ($40/m2)
• Hydrogen and Oxygen Crossover (2 mA/cm2)
• Survivability (-40oC to 120oC)
• Durability (5000 hrs @ <= 80oC & 2000 hrs @ >= 80oC)

2006 • Synthesize and Characterize SDAPP physical properties.
• Demonstrate SDAPP (Sulfonated Diels-Alder Polyphenylene) PEM fuel 

cell performance (1st Generation).
• Continue developing structure-property performance PEM and fuel cell 

relationships to create improvements in PEM materials.

2007 • Membrane Conductivity and Fuel Cell Performance
• Survivability (-40 oC to 120 oC), Degradation, and Durability Studies
• Catalyst Loading and Membrane Cost
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• Thermal & Chemical Stability
(Thermal, Chemical, Processing)

• Low Fuel Cross-Over
(Low O2 & H2 - Tunable)

• Gas Transport
(Electrode & PEM)

• Low Interfacial Resistance
(MEA – Electrodes)

• Chemical Diversity and High MW
• Proton Conductivity & Morphology

• Thermal & Chemical Stability
(Thermal, Chemical, Processing)

• Low Fuel Cross-Over
(Low O2 & H2 - Tunable)

• Gas Transport
(Electrode & PEM)

• Low Interfacial Resistance
(MEA – Electrodes)

• Chemical Diversity and High MW
• Proton Conductivity & Morphology

nSO3H

HO3S

Approach
Hydrocarbon Membrane - SDAPP

1st Generation Sulfonated Diels-
Alder Polyphenylene (SDAPP)
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Fuel Cell Performance
Development of Non-Nafion MEAs
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• Highly sulfonated samples 
do show good high 
temperature & low RH fuel 
cell performance.

• Enhanced performance 
due in part to our new 
alternative binders.

Fuel Cell Performance
Development of Non-Nafion MEAs
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Fuel Cell Performance
50% RH @ 80 oC and 120 oC
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Substituting SDAPPe and SDAPPf within the electrode layers can improve 
or approach same performance as a Nafion based MEA.  However, fuel cell 
performance is dependent on electrolyte type, loading, and hydrogen fuel 
cell operating  temperature.
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Fuel Cell Performance
O.5V with 30wt% Nafion Electrodes
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SDAPP electrodes provide 
good porosity and do not 
significantly impede  
electrochemistry within the 
electrode structures.
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O 2 A ir O 2 A ir
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5 0 R H 1 0 0 R H

Fuel Cell Performance
Development of Non-Nafion MEAs
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Fuel Cell Performance
50%RH Nafion & Non-Nafion Electrodes on N112
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In collaboration/Contract with Giner Electrochemical Systems

Barriers Addressed
– O2 and H2 Crossover
– Fuel Cell Performance
– Thermochemical Stability

Barriers Addressed
– O2 and H2 Crossover
– Fuel Cell Performance
– Thermochemical Stability
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Fuel Cell Performance
Increasing Durability & Conductivity

In collaboration/Contract with Dr. Deck – Virginia Tech

• Polymerization yielded solid polymer
• Incorporation into DA PEM - TBD 
• Physical Properties  - TBD

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Thermochemical Stability

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Thermochemical Stability
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Fuel Cell Performance
Increasing Conductivity – Ullman Reaction

Br Br

O3S

SO3

N

N
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In collaboration/Contract with Dr. Litt - CWRU

• Polymerization yielded solid polymer/ionomer
• MW - TBD 
• IEC & Conductivity – TBD
• Physical Properties  - TBD

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Membrane Cost

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Membrane Cost
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Fuel Cell Performance
Improving PEM Morphology & Function - AFM

In collaboration/Contract with Dr. Perahia - Clemson

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Membrane Cost & Durability

Barriers Addressed
– Conductivity
– Fuel Cell Performance
– Membrane Cost & Durability

Ion Transport

RandomBlock

Ion Transport

RandomBlock
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Enhanced Acidity & Hydration
– Acid Groups
– Organic-Inorganic Composites

Gas Transport
– Tailoring polymers for Electrode and 

PEM utilization

Structure-Property-Function
– Structured Materials (sulfonation) 
– Improved Stability (Mechanical 

(cycling) and chemical)
– Minimize interfacial resistance and 

improve adhesion of PEM and 
catalyst layer

Enhanced Acidity & Hydration
– Acid Groups
– Organic-Inorganic Composites

Gas Transport
– Tailoring polymers for Electrode and 

PEM utilization

Structure-Property-Function
– Structured Materials (sulfonation) 
– Improved Stability (Mechanical 

(cycling) and chemical)
– Minimize interfacial resistance and 

improve adhesion of PEM and 
catalyst layer

Future Work
Improving Fuel Cell Membranes
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Summary
Hydrocarbon Membrane

Relevance:
Identify and Answer fundamental issues with Nafion and alternative PEM and 
MEA fuel cell implementation 

Approach:
Develop a Structure-Property-Performance relationship of alternative PEMs in 
order to mitigate poor fuel performance relative to DOE targets.

Technical Accomplishments and Progress:
Capabilities Established: Material design and synthesis, characterization, device 
testing, system performance measurements, and predictions

Technology Transfer & Collaborations:
Active involvement with industry and academia
$50K$50K award award by Lockheed Martin under a Shared Vision to initiate the by Lockheed Martin under a Shared Vision to initiate the 
understanding of hydrocarbon PEM scaleunderstanding of hydrocarbon PEM scale--up. up. 

Proposed Future Research:
Continue structure property function improvements to achieve DOE fuel cell goals
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Reviewer’s Comments
Response to Previous Year Review

1.Relevance to overall DOE objectives – (Weight - 20%)
• Key technology that must be enhanced.Key technology that must be enhanced.
We have taken our first generation membrane and are adding functionalities to 
improve conductivity, durability, and performance.

2.Approach to performing the R&D  – (Weight - 20%)
•• Separate MEA interface from bulk PEM propertiesSeparate MEA interface from bulk PEM properties
•• Improve Conductivity (low RH) then Electrode InterfaceImprove Conductivity (low RH) then Electrode Interface
Research goals separate PEM from MEA interface.  New Chemistry initiated during 
the next fiscal years is expected to address 2010 DOE performance targets. 

3.Technical Accomplishments and Progress toward overall 
project and DOE goals – (Weight - 35%)
•• Measure conductivity of new membranes as a function of T and RMeasure conductivity of new membranes as a function of T and RH in order to H in order to 
separate PEM versus MEA advances.separate PEM versus MEA advances.
Research goals separate PEM from MEA interface.  New Chemistry initiated during 
the next fiscal years is expected to address 2010 DOE performance targets.
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Reviewer’s Comments
Response to Previous Year Review

4.Technology Transfer / Collaborations with industry / 
universities / other laboratories – (Weight - 10%)
•• Need to develop industrial contactsNeed to develop industrial contacts
•• Develop collaboration on MEA durability and electrode integratDevelop collaboration on MEA durability and electrode integrationion
We have taken our first generation membrane and are adding functionalities to 
improve conductivity, durability, and performance.

5.Proposed Future Research approach and relevance –
(Weight - 15%)
•• Need more aggressive challengesNeed more aggressive challenges
•• Too Broad Too Broad –– optimize PEM then electrodeoptimize PEM then electrode
Research goals separate PEM from MEA interface.  New Chemistry initiated during 
the next fiscal years is expected to address 2010 DOE performance targets of 
performance, durability, and cost). 
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Publications and Presentations
March 2005 - Present

Publications
Hickner, Michael A.; Fujimoto, Cy H.; Cornelius, Christopher J.  “Transport in 

sulfonated poly(phenylene)s: Proton conductivity, permeability, and the state 
of water” Polymer (accepted April 18th, 2006).

Fujimoto, Cy H.; Hickner, Michael A.; Cornelius, Christopher J.; Loy, Douglas A.  
“Ionomeric Poly(phenylene) Prepared by Diels-Alder Polymerization: 
Synthesis and Physical Properties of a Novel Polyelectrolyte” Macromolecules
(2005),  38(12),  5010-5016.

Presentations
Fall 2006: FuelCell 2000 (2), ECS (1) and ACS (1)

Technical Advances
(pre-patents): 3

Publications
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Critical Assumptions & Issues
Hydrocarbon Membrane

1.  Achieving Adequate Proton Conductivity
• Proton Mobility and Acidity – current synthetic method is amenable for 

inclusion of more acidic groups – current approaches are in the correct 
direction to achieve goal.

• Improved Morphology – improvements in structure will enhance proton 
conduction via better utilization of proton carrying groups to improve low RH 
fuel cell function.

• Interface versus Bulk - Separate MEA (interface) from PEM (bulk) to 
understand interrelationships. Improving proton conductivity and transport 
properties within the electrode (low RH & Durability).

2.  Mechanical and Chemical Durability
• Mechanical – Improving flexibility of PEM backbone to accommodate cyclic 

stress and asymmetric water induced stresses.
• Chemical – Improving stability with more chemically stable monomers

1.  Achieving Adequate Proton Conductivity
• Proton Mobility and Acidity – current synthetic method is amenable for 

inclusion of more acidic groups – current approaches are in the correct 
direction to achieve goal.

• Improved Morphology – improvements in structure will enhance proton 
conduction via better utilization of proton carrying groups to improve low RH 
fuel cell function.

• Interface versus Bulk - Separate MEA (interface) from PEM (bulk) to 
understand interrelationships. Improving proton conductivity and transport 
properties within the electrode (low RH & Durability).

2.  Mechanical and Chemical Durability
• Mechanical – Improving flexibility of PEM backbone to accommodate cyclic 

stress and asymmetric water induced stresses.
• Chemical – Improving stability with more chemically stable monomers
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