DMFC Power Supply for All-Day True-Wireless Mobile Computing

Brian Wells / Henry Voss
PolyFuel, Inc.
May 17, 2006

This presentation does not contain any proprietary or confidential information
Overview

Timeline
Start Date: Sept, 2004
End Date: Sept, 2007
Project is ~ 45% complete

Budget
Original Plan: $6.34 million
DOE share: $3.00 million
PolyFuel share: $3.34 million
FY05 Funding: $1.08 million
FY06 Funding: $0

Barriers Addressed
Volumetric Power Density: > 30 W/l
Gravimetric Power Density: > 30 W/kg
Energy Density: > 500 W·h/l
Cost: < $5/Watt
Lifetime: > 1000 hours

This presentation does not contain any proprietary or confidential information
Objectives

- To build a DMFC laptop power supply with a significant advantage over Li-ion batteries
- To fully integrate this power supply into a laptop computer
- A radical departure from conventional active systems is required to realize competitive power density
- Focus is on dramatically improving volumetric power density

This presentation does not contain any proprietary or confidential information
Requirements Definition

- Operating Life: 1000 hours or 125 refueling cycles
- Cost: Less than $100 per unit at 100,000 per year
- Ambient Temperature: +5 °C to +40 °C
- Orientation Independent
 - Must run while tilted or inverted
- Fuel cell system volume: 250 cc
- Methanol cartridge volume: 120 cc
- Fuel: pure or nearly pure methanol
- Maximum noise level: 40 dbA at 0.5 meter
Requirements Definition

- Average Power Level: 15 Watts
- Peak Power Level: 40 Watts
- Voltage: 8.0 - 12.6 Volts, with 10.8 Volt nominal
- Requires Fuel Cell – Battery hybrid design
General Approach

- The best system will involve co-optimization of membrane properties and system strategy
- PolyFuel is approaching the problem from both sides

System/Cell

“*What membrane properties are required by the cell/system?*”
- Operating Strategy
- Electrical Architecture
- Water management
- Thermal Management
- Packaging

Membrane

“*What conditions are required by the membrane?*”
- Conductivity
- MeOH crossover
- Diffusivity
- Mechanical Strength
- Bonding

This presentation does not contain any proprietary or confidential information
System Approach

- Goal is to eliminate as many balance of plant components as possible
 - High parasitic loads cause large increase in device volume
 - Every 1 Watt of parasitic load is worth 10 cc of system volume
 - High pressure, inefficient, and noisy air pump is eliminated

- System must operate on pure or nearly pure alcohol fuel
 - Water necessary for anode reaction is pulled directly through the membrane from the cathode
 - Need to condense and re-circulate product water is eliminated

- New membrane must have more capability
 - Higher diffusivity of water
 - Higher tolerance to methanol
Polymer Membrane Improvements

- Improvements made in polymer stability in high concentrations of methanol
 - No measurable organic material after 7 day soak in 20M methanol at 60 °C

- 40% improvements in fully hydrated proton conductivity
 - 40 mS/cm after soaking in 60 °C water

- Enhanced water transport properties to allow sufficient water to back diffuse from the cathode to the anode

- Small increase in water uptake and membrane swelling
 - 35 wt% water uptake at 100 °C
 - 20% X-Y dimensional change in 8M methanol at 60 °C
Cell Performance at Beginning of Life

- **Anode**: 100% MeOH
- **Stoichiometry**: ~ 1.1
- **Cathode**: ambient dry air
- **Temperature**: 50 C

This presentation does not contain any proprietary or confidential information.
System Component Breakdown

Target Volume Breakdown of Polyfuel Laptop Demonstration

Total System Volume: 370 cc
Energy Density: 325 Wh/Litre (15 W net, 8 hr runtime)
(Volumes in cm^3)

- Stack, 58
- Fuel, 142
- Enclosure, 47
- Balance of Plant, 87
- Electronics, 35
DC-DC Converter Requirements

- DMFC cells have a sizable voltage droop between open circuit and full load
 - Open circuit voltage is about 0.85 Volts
 - Full load voltage drops to about 0.35 to 0.40 Volts
 - Fuel cell stack voltage will vary from 6 Volts to 20 Volts

- Voltage regulation for laptop computer needs to be flat at about 13 Volts
- DC-DC converter will need to be buck-boost combination

- Very high efficiency is required to minimize waste throughout the system
 - Losses in conversion result in more fuel usage
 - Losses in conversion result in larger fuel cell stack
 - Target DC-DC converter efficiency > 95%

A 1% efficiency improvement = 1.2 cc system size reduction

This presentation does not contain any proprietary or confidential information
DC-DC Converter Efficiency Over Full Input Range

- Efficiency: 90.0% to 100.0%
- Input Voltage: 5 to 20

- Boost mode operation
- Buck mode operation
Tool Development – Real time Crossover Measurement

- Real time crossover measurements have been developed to assess cell operation under operating conditions encountered while using high methanol concentrations.

- Crossover methanol from the anode is oxidized to CO$_2$ at the cathode.

- The CO$_2$ is measured using an infrared sensor in the oxidant exhaust.

- Knowing the CO$_2$ concentration and the air flow rate, the methanol crossover rate can be easily computed.

This presentation does not contain any proprietary or confidential information.
Tool Development – Real time Crossover Measurement

This presentation does not contain any proprietary or confidential information.
Tool Development – Current Mapping

- Simple tool developed to measure the current density distribution in an operating cell
- Cell elements of 0.5 cm² are measured using the tool to create a real time current density map
- Can be used to observe reactant distribution, catalyst corrosion, humidity, and temperature effects
Current Mapping Tool Output

- Color gradient displays current density distribution throughout the cell
- Red areas have high current density; blue areas have low current density
- Sample map at right has low air stoichiometry leading to high currents at the air inlet and low currents at the air exhaust
Future Work

- Establish cell lifetimes under new, harsher operating conditions
- Integrate all subsystems together into a highly compact package
- Design orientation insensitive fuel tank with high utilization
- Characterize full systems under simulated load conditions
 - Determine system operating life
 - Measure system noise levels
 - Measure system emissions