DOE Chemical Hydrogen Storage Center of Excellence: Center Overview & Los Alamos National Laboratory Contributions

Bill Tumas
Los Alamos National Laboratory
5/16/06

This presentation does not contain any proprietary or confidential information
Objective DOE Chemical Hydrogen Storage Center

Identify, research, develop and validate advanced on-board chemical hydrogen storage systems to overcome technical barriers and meet 2010 DOE system goals with the potential to meet to 2015 goals:

- Develop materials, catalysts and new concepts to control thermochemistry and reaction pathways
- Assess concepts and systems using engineering analysis and studies
- Select most promising chemical systems for engineering development
- Develop life cycle inventory and demonstrate a 1 kg storage system
- More efficient borate-to-borohydride (B-OH to B-H) regeneration
- Alternative boron chemistry to avoid thermodynamic sinks using polyhedral boranes (BxHy) or amine-boranes
- Concepts using coupled endo/exothermic reactions, nanomaterials, heteroatom substitution for thermodynamic control
Science of Chemical Hydrogen Storage

• **CAPACITY**
 - Develop, synthesize, test compounds with high hydrogen density, proper energetics, and potential pathways
 - Theory and modeling for insight

• **HYDROGEN RELEASE**
 - Pathways: avoid large thermodynamic sinks, byproducts
 - Rates: study mechanisms
 - Develop and optimize catalysts and catalytic processes

• **REGENERATION**
 - Develop pathways closer to thermodynamic limits
 » Avoid high energy intermediates
 » Use regenerable intermediates

Theory ↔ Experiment ↔ Assessment
<table>
<thead>
<tr>
<th>Project</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 B-O to B-H Engineering Guided Research</td>
<td>ROH, MCEL, PSU, Ala, USB, PNNL, LANL</td>
</tr>
<tr>
<td>1.2 Engineering Assessment of Hydrogen Generation Systems</td>
<td>MCEL, ROH, LANL, PNNL</td>
</tr>
<tr>
<td>2.1 Polyhedral Borane Chemistry</td>
<td>UCLA, IMX, PSU, PNNL, LANL</td>
</tr>
<tr>
<td>2.2 Amine-Borane Chemistry</td>
<td>Penn, UW, NAU, Ala, IMX, PNNL, LANL</td>
</tr>
<tr>
<td>2.3 Amine-Borane Systems Engineering, Safety</td>
<td>PNNL, NAU, LANL</td>
</tr>
<tr>
<td>3.1 Organics and Coupled Reactions</td>
<td>Ala, PNNL, LANL</td>
</tr>
<tr>
<td>3.2 Nanoparticles and Main Group Hydrides</td>
<td>UC Davis, Ala, LANL</td>
</tr>
</tbody>
</table>
Summary and Key Developments

- **B-OH \rightarrow B-H**
 - New concepts for electrochemical reduction of B-OH(OR) bonds
 - Options and spreadsheet (energetics)

- **On-board storage engineering**
 - Engineering assessment tools being developed and engineering analysis in progress
 - On-board generation models with SBH as a prototypical system

- **Polyhedral boranes**
 - Catalytic hydrolysis of polyhedral boranes

- **Ammonia borane (AB) dehydrogenation**
 - Inclusion in mesoporous materials alters rate and selectivity
 - Acid catalysts can lead to multiple dehydrogenation from AB
 - Rapid single dehydrogenation with Ir catalysts
 - Multiple dehydrogenation of AB is facile with homogeneous electron-rich precious metal complexes
 - The first examples of non-precious metal catalysts have been discovered
Summary and Key Developments (cont.)

- Ammonia borane (AB) dehydrogenation (cont)
 - Heterogeneous catalysts have been discovered (including rapid screening)
 - Alternative reaction media can open up new reaction pathways
 - Kinetics and mechanistic studies underway
- AB regeneration concept development/demonstration
 - Dissolution, hydride transfer, regenerable hydrides, ligand exchange
- Organic systems
 - Theory on thermodynamics
 - Hydrogen release demonstrated
 - Coupled reactions
- Nanophase materials
 - Developing routes to H-loaded Si and Si$_x$(NH$_2$)$_n$
FY06 Center Coordination

• Planning
 – Develop performance-based approach
 – Develop implementation plan
 – Develop Center and Project Milestones
 in accordance with DOE’s multiyear R&D plan

• Implementation
 – Center and Center Project meetings
 – Site visits
 – Monthly Center Project conference calls
 – Internal website
 – Regular PI-PI communication/email
 – Personnel exchange
 – Coordinating council
 » Establish go/no-go decision process and recommendations to DOE
 » Communicate lessons learned and safety aspects
 » Facilitate Center IP coordination
 » Promote outreach activities
 » Foster communication with other COEs and DOE projects
Performance-Based Approach

POTENTIAL CANDIDATES

- Material Weight % (>6.0%)
- Theoretical Max. Efficiency for Regeneration (50%)
- Exp’tl Demonstration of Hydrogen Release
- Eng. Assessment of Hydrogen Release
- Exp’tl Demo of Regeneration
- Eng. Assessment of Regeneration
- Systems Engineering Assessment

CAPACITY

H₂ RELEASE

REGENERATION

ENGINEERING

VIABLE SYSTEMS
Thermodynamic Maximum Storage Efficiency: “Burn ratio”

- Consider the (hypothetical) chemical regeneration process as the reverse of the hydrogen release reaction
- Calculate ΔG^0 for this process, per H_2 stored
 - (use G instead of H to allow for unfavorable entropy of storing H_2)
- Define “burn ratio” as amount of H_2 that must be burned to provide this ΔG^0
 - one H_2 provides 56.7 kcal of free energy [UHV]
- Efficiency = $1/(1+$burn ratio$)$
Storage Capacities and Efficiencies

<table>
<thead>
<tr>
<th>Hydrogen release reaction</th>
<th>Regeneration reaction</th>
<th>no. of H2 for release reaction as written</th>
<th>mwt of all reactants (including water)</th>
<th>density of reactants</th>
<th>deltaH0 of release reaction, kcal</th>
<th>delta G0 of release reaction, kcal</th>
<th>"burn ratio", higher of Delta G0 or Delta H0</th>
<th>max ideal efficiency</th>
<th>Grav. density, wt% H2</th>
<th>Vol density, kg H per liter</th>
<th>Volumetric target met</th>
<th>gravimetric target met</th>
<th>efficiency goal met</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaBH4 + 2 H2O</td>
<td>NaBO2 + 4 H2</td>
<td>4</td>
<td>73.86</td>
<td>1.4</td>
<td>-50.72</td>
<td>-76.00</td>
<td>0.34</td>
<td>74.9%</td>
<td>10.918</td>
<td>0.15285</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>NaBH4 + 5 H2O (approx 11 M, 30%)</td>
<td>NaBO2 + 4H2</td>
<td>4</td>
<td>127.9</td>
<td>1.4</td>
<td>-50.72</td>
<td>-76.00</td>
<td>0.34</td>
<td>74.9%</td>
<td>6.30493</td>
<td>0.08827</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>formic acid</td>
<td>CO2 + H2</td>
<td>4</td>
<td>46.03</td>
<td>1.4</td>
<td>-50.72</td>
<td>-76.00</td>
<td>0.34</td>
<td>74.9%</td>
<td>3.9795</td>
<td>0.0438</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>B10H14</td>
<td>10B(s) + 7 H2</td>
<td>7</td>
<td>122.22</td>
<td>1</td>
<td>-50.72</td>
<td>-76.00</td>
<td>0.34</td>
<td>74.9%</td>
<td>6.30493</td>
<td>0.08827</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>silane condensation</td>
<td>Me3Si-SiMe3 + H2</td>
<td>1</td>
<td>148.4</td>
<td>1</td>
<td>-2</td>
<td>-8.00</td>
<td>0.14</td>
<td>87.6%</td>
<td>1.35849</td>
<td>0.01358</td>
<td>none</td>
<td>none</td>
<td>>70%</td>
</tr>
<tr>
<td>paraformaldehyde+H2O = CO2 +H2</td>
<td>CO2 + 2 H2</td>
<td>2</td>
<td>48.04</td>
<td>1</td>
<td>16.71</td>
<td>-8.98</td>
<td>0.12</td>
<td>89.1%</td>
<td>8.39301</td>
<td>0.08393</td>
<td>2015</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>MgO,CH3OH + H2O</td>
<td>MgCO3 + 3 H2</td>
<td>3</td>
<td>90.36</td>
<td>1</td>
<td>3.45</td>
<td>-13.29</td>
<td>0.08</td>
<td>92.7%</td>
<td>6.69323</td>
<td>0.09371</td>
<td>2015</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>hexahydrotetrazine</td>
<td>triazine + 3 H2</td>
<td>3</td>
<td>87.12</td>
<td>1</td>
<td>17</td>
<td>-9.00</td>
<td>0.08</td>
<td>92.3%</td>
<td>6.94215</td>
<td>0.06942</td>
<td>2010</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>BH3NH3 to BN</td>
<td>BN + 3 H2 = BH3NH3</td>
<td>3</td>
<td>30.87</td>
<td>0.76</td>
<td>-23.4</td>
<td>-45.50</td>
<td>0.27</td>
<td>78.9%</td>
<td>19.5918</td>
<td>0.1489</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>BH3NH3 to BHNH (borazine)</td>
<td>BHNH + 2 H2 = BH3NH3</td>
<td>2</td>
<td>30.87</td>
<td>0.76</td>
<td>-6.5</td>
<td>-23.10</td>
<td>0.20</td>
<td>83.1%</td>
<td>13.0612</td>
<td>0.09927</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>C6H12 -> C6H6 + 3 H2</td>
<td>C6H6 + 3 H2</td>
<td>3</td>
<td>84.16</td>
<td>1</td>
<td>49.08</td>
<td>23.35</td>
<td>0.24</td>
<td>80.7%</td>
<td>7.18631</td>
<td>0.07186</td>
<td>2010</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>CH3OH + H2O -> CO2 + 3 H2</td>
<td>CO2+3H2</td>
<td>3</td>
<td>50.06</td>
<td>1</td>
<td>31.41</td>
<td>2.22</td>
<td>0.15</td>
<td>86.7%</td>
<td>12.0815</td>
<td>0.12082</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
<tr>
<td>C10H18 -> 5 H2 + C10H8</td>
<td>C10H8 + 5H2</td>
<td>5</td>
<td>138.25</td>
<td>1</td>
<td>8.56</td>
<td>39.01</td>
<td>0.25</td>
<td>80.0%</td>
<td>7.29114</td>
<td>0.07291</td>
<td>2010</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>2 NH3 = N2 + 3 H2 (liquid density at bp)</td>
<td>3 H2 + N2 = 2 NH3</td>
<td>3</td>
<td>34.06</td>
<td>0.682</td>
<td>21.94</td>
<td>7.84</td>
<td>0.11</td>
<td>90.3%</td>
<td>17.7569</td>
<td>0.1211</td>
<td>2010</td>
<td>2010</td>
<td>>70%</td>
</tr>
<tr>
<td>MgCl2.6(NH3) = MgCl2 + 3N2 + 9H3 (assume 10 kcal binding enthalpy per NH3, 2 kcal binding free energy)</td>
<td>MgCl2+3N2+9H3</td>
<td>9</td>
<td>197.39</td>
<td>1.239</td>
<td>126</td>
<td>36</td>
<td>0.21</td>
<td>83.0%</td>
<td>9.19196</td>
<td>0.11389</td>
<td>2015</td>
<td>2015</td>
<td>>70%</td>
</tr>
</tbody>
</table>
Chemical Hydrogen Storage

- H$_3$NBH$_3$ to (BHNH)$_n$
- Ammonia to $N_2 + H_2$
- H$_3$NBH$_3$ to BN

30% NaBH$_4$

Current process: 30% NaBH$_4$

Optimal process: Center Efficiency Goal

Ideal H_2 gas 200 atm

Volumetric Material Capacity (kg H_2/liter)

Maximum Energy Efficiency (%)

DOE 2010 System Target

DOE 2015 System Target

Liquid Hydrogen

30% NaBH$_4$

Current process

Center Efficiency Goal

Heteroatom-Substituted Organics

Coupled Reactions
FY06 Center Coordination

• Planning
 – Develop performance-based approach
 – Develop implementation plan
 – Develop Center and Project Milestones
 in accordance with DOE’s multiyear R&D plan

• Implementation
 – Center and Center Project meetings
 – Site visits
 – Monthly Center Project conference calls
 – Internal website
 – Regular PI-PI communication/email
 – Personnel exchange
 – Coordinating council
 » Establish go/no-go decision process and recommendations to DOE
 » Communicate lessons learned and safety aspects
 » Facilitate Center IP coordination
 » Promote outreach activities
 » Foster communication with other COEs and DOE projects
Center Coordination: Looking Ahead

• Planning
 – Based on results, assessments, meetings
 – Coordinate project transition and down-selection
 – Negotiate project changes, technical direction

• Key FY06 Center Decisions
 – Develop milestones and go/no-go criteria for FY07 decision on sodium borohydride
 – Increase coordinated effort on catalytic dehydrogenation of ammonia-borane, including mechanisms and product characterization
 – Accelerate development of BN regeneration concepts
 – Integrate exploratory organic-based efforts into a Center project on non-Boron material development
Center Path Forward

- **Go/no-go on sodium borohydride (FY07)**
 - Determine feasibility and provide a go/no-go recommendation for Sodium Borohydride (SBH) hydrolysis on-board storage system based on modeling and laboratory-scale experimental demonstration of energy efficient regeneration off-board.
 - Criteria development
 - Center milestones by quarter
- **Ammonia-borane**
 - Increase rates for AB dehydrogenation
 - Enhance spent AB regeneration scheme
- **Optimization and evaluation of other boron-containing systems**
- **Coordinated effort on non-boron organic system**
- **Exploratory research on other options**
- **Prepare for down-selection of storage material**
 - Criteria development
FY07 Milestones

• **FY07 Milestones:**
 - Complete assessment of the most energy-efficient routes for indirect regeneration of sodium borate to sodium borohydride (complexed borates)
 - Down-select catalysts and chemical processes (2-3 candidates max) for hydrogen generation from ammonia-borane
 - Down-select to organic materials and polyhedral boranes (3-5 candidates max) along with associated processes for hydrogen generation
 - Down-select from chemical hydrogen regeneration processes for sodium borohydride.
 - Complete assessment of ammonia borane regeneration routes to assist in down selection process
 - Complete assessment of nanoparticles for hydrogen storage capacity
 - Complete assessment for regeneration of organics and polyhedral boranes to assist in down-selection process

• **Go/No Go Decision on Sodium Borohydride (4QFY07)**
Center Partners

- **Penn**: Prof. Larry Sneddon
 - Martin Bluhm (PD), Prof. Mark Bradley, William Ewing (GS)
- **UCLA**: Prof. Fred Hawthorne
 - Satish Jalisaatgi (PD), Bhaskar Ramachandran (PD), Robert Kojima (GS), Thomas Quickel (GS), Colin Carver (GS)
- **Penn State**: Prof. Digby MacDonald
 - Justin Tokash (GS), Jason McLafferty (GS), Yancheng Zhang (PD)
- **Alabama**: Profs. Dave Dixon, A. Arduengo
 - Owen Webster, Monica Vasiliu, Luigi Iconaru, Michael Phillips, Daniel Grant (GS), Jacob Batson (UGS), Myrna Hernandez Matus (PD), Prof. Minh Nguyen
- **UW**: Profs. Karen Goldberg, Mike Heinekey
 - Melanie Denney (PD), Vincent Pons (PD)
- **UC Davis**: Profs. Susan Kauzlarich, Phil Power
 - Japhe Raucher (GS), Li Yan Wang (PD)
- **NAU**: Prof. Clint Lane
- **Rohm and Haas**: Sue Linehan
 - Frank Lipiecki, Arthur Chin, John Yamamoto, Leo Klawiter, James Vouros, Sam November, Aaron Sarafinas, Alan Keiter, Wendy Bingaman, Jay Soh, and Robert Wilczynski; Larry Guilbault and Duane Mazur (consultants)
- **Millennium Cell**: Ying Wu
 - Jeffrey Orgeta, Robert Molter, Rick Mohring, Mike Kelly, Todd Randal, Roxanne Spencer
- **Intematix**: Xiao-Dong Xiang
 - Wei Shan, Jonathan Melman
- **US Borax**: Dave Schubert
 - Jonathan Owen
- **PNNL**: Chris Aardahl
 - Tom Autrey, Maciej Gutowski, Anna Gutowska, John Linehan, Scot Rassat, Wendy Shaw, Ashley Stowe, Mike Thompson
- **LANL**: R. Thomas Baker, Anthony Burrell, Fernando Garzon, P. Jeffrey Hay, Neil Henson, Kevin John, Karl Jonietz, Richard Keaton (PD), Dan Kelly, Kevin Ott, Bobbi Roop, Dan Schwarz (PD), Frances Stephens (PD), David Thorn

US Department of Energy EERE
Los Alamos National Laboratory
Contributions to DOE Center

R. T. Baker F. Stephens
D. L. Thorn R. Keaton
A. Burrell J. Blacquiere
K. Jonietz D. Schwarz
K. C. Ott J. Stairs
J. Rau T. Cameron
P. J. Hay J. Webb
N. Henson T. Semmelsberger
B. Roop C. Macomber

W. Tumas

May 16, 2006

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- Start – Jan 2005
- Finish – Jan 2010
- 28 % complete

Budget
- FY05: $ 1200 K
- FY06: $ 1760 K

Partners
DOE
Chemical Hydrogen Storage Center

Barriers
- Cost
- Weight and volume
- System Life-Cycle Assessment
- Energy Efficiency
- Regeneration Processes

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravimetric Capacity</td>
<td>6 wt %</td>
<td>9 wt %</td>
</tr>
<tr>
<td>Volumetric Capacity</td>
<td>.045 kg/L</td>
<td>0.081 kg/L</td>
</tr>
<tr>
<td>Minimum Flow Rate (g/s)/kW</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Regeneration Efficiency</td>
<td>50 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>
LANL Approach and Objectives

APPROACH

CANDIDATES / OPTIONS

- Wt %
- Max Regeneration Eff
- Expt'l H₂ Release
- Expt'l Regen
- Analysis

SOLUTIONS

- Develop and demonstrate
- Study fundamentals
- Evaluate limits
- Assess and optimize

OBJECTIVES

- Reduction of B-OH to B-H
 - Electrochemistry
 - Chemical reduction
- Ammonia-borane
 - Catalysis for H₂ release
 - Selectivity of BNHₙ products
 - Efficient regeneration
- Organic-based systems
 - Coupled reactions for hydrogen release
 - Hetero-atom containing organics
- Center coordination
APPROACH

- Data mining for leads
- Electrolytically reduce B(OH)_4^-
 - Aqueous solution
 - Non protic solvents
 - Complexants
- Search for electrochemical activity
 - Electrodes, conditions
- Elucidate reaction mechanisms

RESULTS

- Initial data mining indicates no clear path forward for the production of BH_4^- in an H_2O system.
- Number of boron compounds tested show no electrochemical activity
- ROH/PSU/MCEL/LANL identified potential routes for reduction based on proprietary ROH data
B-H via Electrochemical/Chemical Reduction

Initial Compounds Tested
(no reduction on C, Pt, Au electrodes)

B(OR)₃
BBr₃
BCl₃
B(NR₂)₃
B(SR)₃
B(OSO₂R)₃

FUTURE WORK

• Work begun on advancing ROH results
• Searching for boron species that undergo boron centered reduction
• Examining electrode surfaces that could promote chemical reduction
• Indirect electrochemical reduction
• Thermal routes with regenerable hydrides and/or metals
Ammonia-Borane for Hydrogen Storage

\[n \text{H}_3\text{NBH}_3 \rightarrow [\text{BNH}_x]_y + (3n - x/2) \text{H}_2 \]
\[(6.6 - 18 \text{ material wt}\% \text{ H}_2)\]

OBJECTIVES

- Identify catalysts for rapid, controlled release of hydrogen from ammonia-borane (AB) (determine capacity, kinetics and mechanisms)
- Fully characterize dehydrogenated BNH\textsubscript{x} products obtained from different families of catalysts

RESULTS

- Discovered AB dehydrogenation catalysis by strong Bronsted and Lewis acids; rates, product distribution and extent of hydrogen release depend on relative amounts of AB, acid, and solvent
- Discovered base metal carbene complexes that catalyze hydrogen release from AB to give over 2 equiv. of H\textsubscript{2}
- Obtained significant quantities of AB, cyclotriborazane [(H\textsubscript{2}BNH\textsubscript{2})\textsubscript{3}] and borazine [(HB=NH)\textsubscript{3}] for detailed relative rate studies
Catalytic Chemistry in Solution: Activation of AB

Thermal release of H₂ is too slow at T < 100°C
What catalyzes the process?

- Acid Catalysis (Lewis Acid or Bronsted Acid)

- Metal Catalysis
Results: Acid Catalysis

- Strong Bronsted and Lewis acids enable H₂ release at room temp
- Experimental and theory studies (w/ Alabama):
 - Cationic initiator
 - Acyclic BNHₓ products
 - < 1 eq. hydrogen, due to μ-aminodiborane by-product
 - By-product formation leads to free NH₃ which quenches cation and chain propagation

H-coupled ¹¹B NMR of AB and 0.1 equiv. triflic acid in diglyme at 24°C
Acid Catalysis:
Reaction Pathway from Theory and Experiment

In collaboration with University of Alabama

Lowest energy structures
Acid Catalysis: Concentration Effects

- Reducing acid/AB ratio eliminates μ-aminodiborane and affords > 2 H₂
- Reducing amount of solvent gives faster rates but volatile borazine is major product

H-coupled ¹¹B NMR of AB and 0.005 eq. B(C₆F₅)₃ in diglyme at 80°C

80% conversion in 4 hours!
Rate and Extent of Ammonia-Borane Dehydrogenation in Diglyme solution

- H₂ release rate and extent increase most with dilute acid

Concentration Effects (80 °C)

- H₂ release rate and extent increase when AB is slurried with diglyme

Acid Catalysis (70 °C)
Homogeneous Catalysts: Transition Metals

APPROACH

- Examine electron-rich metal complexes
- “Base” metal complexes with electron-rich phosphine and carbene ligands

RESULTS

- Iron and nickel phosphine complexes are slow and short-lived due to inactive metal boride formation
- Metal carbene complexes afford long-lived catalysts that afford linked borazines without build-up of $[\text{BH}_2\text{NH}_2]_n$ intermediates

![Graph showing spectra and linked borazines](image)
Rates Depend on Metal and Ligands

- Kinetics of Ni, Ru, and Rh carbene complexes
- Best catalyst to date is Ni complex with Enders’ triazacarbene III

\[
y = 4.59 - 0.0158x \quad R^2 = 0.998
\]

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ni / I</th>
<th>Ni / II</th>
<th>Ni / III</th>
<th>Ru / III</th>
<th>Rh / III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rates at 60°C (10^{-3} \text{ min}^{-1})</td>
<td>5.6</td>
<td>7.3</td>
<td>64.6</td>
<td>34.7</td>
<td>15.8</td>
</tr>
</tbody>
</table>
Summary: Catalytic Hydrogen Release from AB

• Acid Catalysis
 – Strong Lewis and Bronsted acids promote hydrogen release even at room temperature to afford \([\text{BH}_2\text{NH}_2]_n\) oligomers
 – At low acid concentrations at 80°C linked borazines are obtained (>2 eq. H₂)
 – Slurries of ammonia-borane generate twice as much hydrogen at 80°C (vs. solid)

• Metal Catalysis
 – Base metal complexes of N-heterocyclic carbenes are unique in
 » 1) affording long-lived dehydrogenation catalysts without metal boride formation; and
 » 2) affording linked borazines without build-up of \([\text{BH}_2\text{NH}_2]_n\) intermediates
 – Fastest rate to date = 0.06 min⁻¹ (Ni/Enders)
 » 153 g of AB to release 0.02 g H₂ per sec
 » For AB:catalyst = 20, need 14.6 g of Ni (plus carbene)
 » For 75 kW, need 11.5 kg of AB (1.1 kg of Ni) for target rate
Path Forward for AB Catalysis

- Increase rates
- Full product characterization
 - Scale up catalytic reactions
- Mechanistic studies to optimize catalysis
 - Optimal solvent, concentration and temperature for desired rates, products and extent of hydrogen release
- Collaborate with Center engineering assessment team to identify key parameters for solution catalysis
 - Minimize solvent to increase capacity
Toward Regeneration of Ammonia Borane

OBJECTIVE
• Develop and demonstrate regeneration process for spent AB

APPROACH (LANL/Penn)
• Digest spent material without wasting remaining B-H bonds
• Use lowest-energy, least expensive reductant possible
• Use thermoneutral or reversible steps wherever possible
• Find high yield reactions

RESULTS
• Developed 5 step process
• Demonstrated 3 of 5 steps in lab
• Demonstrated regenerable hydride
• Identified other hydrides
Results: Reduction of B-X to B-H

- **Digestion, activation (e.g. Penn)**
 Catechol and acid (e.g. HCl)

- **Demonstrated reduction of Cl-BCat**
 \[
 \text{Cl-BCat} + \text{HSnBu}_3 \rightarrow \text{H-BCat} + \text{ClSnBu}_3
 \]
 (hexane or neat: rapid, mildly exothermic, near-quantitative yield)

- **Metal-hydride regeneration**
 \[
 (\text{HCO}_2)\text{SnBu}_3 \rightarrow \text{HSnBu}_3 + \text{CO}_2
 \]
 \[
 \text{ClSnBu}_3 + \text{NaOCHO} \rightarrow \text{NaCl} + (\text{HCO}_2)\text{SnBu}_3
 \]
 (endothermic decarboxylation at 110-140 °C)

NET REDUCTION PROCESS

\[
\text{H}_2 + \text{CO}_2 + \text{Cl-BCat} + \text{heat} \xrightarrow{\text{ClSnBu}_3} \text{H-BCat} + \text{HCl} + \text{CO}_2
\]
Disproportionation Step: H-BCat to BH$_3$ species

Diethylaniline drives disproportionation

3 H-BCat + NEt$_2$Ph = H$_3$B-NEt$_2$Ph + B$_2$Cat$_3$

Slow, establishes clean equilibrium (THF solution)
$\Delta H \approx$ -10 to -13 kcal
$\Delta S \approx$ -35 to -45 eu

- Exothermic disproportionation is favored at lower temperature
- H$_3$B-NEt$_2$Ph product reacts quantitatively with ammonia to make AB
- B$_2$Cat$_3$ co-product can be recycled (activated, then reduced)
AB Regeneration: Path Forward

• **Process Simplification**
 – Combine/integrate 5-steps
 – Digestion, activation, reduction, disproportionation, ammoniation

• **Improvement in Steps**
 – Will need efficient digestion yet without significant waste of residual B-H.
 » Catechol under investigation, not optimized
 » Anticipate that “activation” step may be troublesome/costly
 – Initial leads for new concept which combines activation and reduction
 – Establish other hydride systems
 » Silanes also capable of reduction
 » Reduction using electrochemically-generated surface hydrides
 – Develop other concepts

• **Analysis and Assessment**
 – How good does this overall scheme look under rigorous engineering and economic scrutiny? Relative to other routes?
 » Project Zip: BCl₃/H₂, borates/Al/H₂
Organic-Based Materials for Hydrogen Storage

BACKGROUND

• Organic compounds contain considerable hydrogen
• Offer potential advantages as storage materials
• Hydrogen release from most C-H bonds occurs endothermically at elevated temperature

OBJECTIVE

• Identify compounds and chemical reactions that release H\(_2\) from organic materials with near thermoneutrality at ambient temperature

APPROACH

• Use simultaneous or tandem “coupled reactions” to balance an endothermic H\(_2\) release with an exothermic reaction step
 – Mg(OCH\(_3\))\(_2\)·MgO composites react with water to release H\(_2\),
 – More favorable enthalpy (\(\Delta H\) ca. +1 kcal/H\(_2\)) than methanol reforming (\(\Delta H\) +10 kcal/H\(_2\))
• Use heteroatom substitution to lower the enthalpy of H\(_2\) release
 – Dihydrobenzimidazoles act as “organic hydrides,” with acids
 – Exothermic release of H\(_2\)
Results: Coupled Reactions

- Developed Mg(OCH$_3$)$_2$·MgO·catalyst composites

 $$\text{Mg(OCH}_3\text{)}_2\cdot\text{MgO} + 3 \text{H}_2\text{O} = 2 \text{MgCO}_3 + 6 \text{H}_2$$

- Theoretical composite material capacity = 6.7 wt%
- $> 0.09 \text{ kg/ H}_2/\text{L w/o water}$
- Demonstrated yield to date:
 - 4.4 wt% H_2
 - 46% of theoretical
- Demonstrated H_2 release rate:
 - 20 sccm/g at 260 °C
- At this release rate, 600 g would provide 0.02 g H_2/sec
Coupled Reactions

THEORY

Prediction from computation:
C-H bonds of “terminal” methoxide are ca. 7 kcal weaker than “cube corner” methoxide

Explore compositions having less “cube corner” methoxide, more “terminal” methoxide:
$$[(\text{CH}_3\text{O})\text{Mg}]_4(\mu-\text{OH})_4$$

FUTURE WORK

- Incorporate more efficient catalysts
- Reduce methanol, CO$_2$ breakthrough; optimize H$_2$ yield
- Release H$_2$ at 10-100x present rate, lower temperature
- Study other Mg(alkoxide)$_2$:MgO·catalyst composites
- Exploit structural control of chemistry
Results: “Organic Hydrides”

Dihydrobenzimidazoles react with acids:

\[
\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{H}_3\text{C} & \quad \text{H} \\
\end{align*}
\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{H}_3\text{C} & \quad \text{H} \\
\end{align*}
\begin{align*}
\xrightarrow{\text{RT acetic acid}} \\
\text{finely divided Pd} \\
\end{align*}
\begin{align*}
\text{CH}_3 & \quad \text{Biacetate} \\
\text{H}_3\text{C} & \quad \text{H} \\
\end{align*}
\begin{align*}
\xrightarrow{\text{HOAc}} \\
\end{align*}

• Hydrogen release is facile at room temperature (turnover rate ca. 30/min, mole/mole Pd)
• Geminal-di-heteroatom substitution makes H₂ release exothermic \(\Delta H^\circ \text{ ca. } -10(3), \Delta G^\circ \text{ ca. } -18(6) \text{ kcal/mole, irreversible with H}_2 \text{ pressure alone}
• H₂ yield is quantitative, but limited to 1 wt% H₂ by wt of these particular compounds
Future Work: “Organic Hydrides”

- Increase H_2 capacity

- Reduce molecular weight of components
 - Have removed benzo group
 - H_2 release demonstrated for “staged” process, not for “one-pot” process

 “staged process”: $\text{Org-H} + \text{metal-complex} = \text{Org}^+ + \text{H-metal-complex}$
 $\text{H-metal-complex} + \text{acid} = H_2 + \text{metal-complex}$

- Need to develop new catalysts that work without benzo group in “one-pot” process

- A goal: dehydrogenation of hexahydrotriazine (6.9 wt% H_2)

Combining with other Center organic material concepts in new developmental thrust
LANL Summary: Approach to Targets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Gravimetric Capacity (6 wt%)</td>
<td>2.7 (with solvent, catalyst)</td>
<td>13-19%</td>
<td>4.4 (dry)</td>
<td>6.7 (with H₂O)</td>
<td>0.9</td>
<td>6.9 (> 8)</td>
</tr>
<tr>
<td>Material Volumetric Capacity 0.045 kg/L</td>
<td>0.02</td>
<td>0.12-0.16</td>
<td>0.04</td>
<td>> 0.09</td>
<td>0.015</td>
<td>0.062</td>
</tr>
<tr>
<td>H₂ Flow Rate 0.02 (g/s)/kW</td>
<td>Needs 153 g AB, 14.6 g Ni</td>
<td>-</td>
<td>Needs 600 g of material</td>
<td>-</td>
<td>Needs 2 g catalyst</td>
<td>-</td>
</tr>
<tr>
<td>Regeneration Efficiency (Center: 50%)</td>
<td>TBD</td>
<td>80%</td>
<td>TBD</td>
<td>92%</td>
<td>TBD</td>
<td>92%</td>
</tr>
</tbody>
</table>
FUTURE WORK—FY07

- Determine if B-O to B-H is possible with better energy efficiency
- Increase capacity and rates of AB dehydrogenation
- Enhance spent AB regeneration process(es)
- Energy efficient metal hydrides
- Development of new chemistry for non-boron-based storage system with > 6-7 material wt%
- Mechanistically couple endothermic and exothermic reactions
Publications/Patents/Presentations

• Publications

• Patents filed (5)
 – Composition and method for storing and releasing hydrogen
 – Energy efficient synthesis of boranes
 – Method and system for hydrogen evolution and storage
 – Base metal dehydrogenation of amine boranes
 – Acid catalyzed dehydrogenation of amine boranes

• Presentations including
 – Posters at Inorganic/Organometallic Gordon Conferences, Aug 05
 – MS&T, Pittsburgh, Sept 05
 – FECHEM Conference on Organometallic Chemistry, Budapest, Sept 05
 – Singapore National Chemistry Conference, Oct 05
 – Pacificchem, Honolulu, HI, Dec 06
 – FC Expo, Tokyo Jan 06
 – AIST, NEDO, Honda, Feb 2006
 – MRS Spring Meeting, San Francisco, CA Apr 06
 – University seminars (5)
Backup Slides: Center Overview
Center Talk: Center Activities

<table>
<thead>
<tr>
<th>CENTER/PROJECT MEETINGS</th>
<th>SITE VISITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electrochem meeting at PSU (3/05)</td>
<td>• PSU (3/05)</td>
</tr>
<tr>
<td>– ROH, MCEL, LANL, PSU</td>
<td>– ROH, MCEL, LANL</td>
</tr>
<tr>
<td>• Center meeting at Annual Review (5/05)</td>
<td>• UCLA (4/05)</td>
</tr>
<tr>
<td>– All, DOE</td>
<td>– Intematix, PNNL, LANL</td>
</tr>
<tr>
<td>• PNNL/LANL BN regen brainstorming, Berkeley (8/05)</td>
<td>• US Borax (4/05)</td>
</tr>
<tr>
<td>• ACS meeting (Washington DC) (8/05)</td>
<td>– LANL, PNNL, USB</td>
</tr>
<tr>
<td>– PNNL, Penn, LANL, MCEL</td>
<td>• LANL, PNNL (7/05)</td>
</tr>
<tr>
<td>• Engineering Meeting at PNNL (9/05)</td>
<td>– PNNL, LANL</td>
</tr>
<tr>
<td>– MCEL, ROH, LANL, PNNL</td>
<td>• Intematix (8/05)</td>
</tr>
<tr>
<td>• Semi-annual Center meeting at Salt Lake City (10/05)</td>
<td>– PNNL, LANL</td>
</tr>
<tr>
<td>– All, DOE</td>
<td>• UC Davis (8/05)</td>
</tr>
<tr>
<td>• BN regen meeting at SLC (10/05)</td>
<td>– PNNL</td>
</tr>
<tr>
<td>• Analysis meeting at Argonne Nati Lab (10/05)</td>
<td>• UCLA (11/05)</td>
</tr>
<tr>
<td>• US Borax B-OH = B-H</td>
<td>– PNNL, PSU, LANL</td>
</tr>
<tr>
<td>– LANL, PNNL, PSU</td>
<td>• Rohm and Haas SBH Plant Tour (1/06)</td>
</tr>
<tr>
<td>• Tier 1 meeting at Rohm and Haas (12/05)</td>
<td>– DOE, PNNL</td>
</tr>
<tr>
<td>– PNNL, LANL, MCEL, ROH</td>
<td>• DOE Site Visits</td>
</tr>
<tr>
<td>• PacifiChem meeting (Hawaii) (12/05)</td>
<td>– LANL (7/05), PNNL (7/05), Penn (2005),</td>
</tr>
<tr>
<td>– Ala, UW, PNNL, Penn, LANL</td>
<td>Intematix (1/06), UCLA (1/06), ROH</td>
</tr>
<tr>
<td>• AB chemistry meeting at SLC (2/06)</td>
<td>(3/06), Alabama (3/06)</td>
</tr>
</tbody>
</table>

| • DOE HQ (several; LANL, PNNL) | • DOE Site Visits |

<table>
<thead>
<tr>
<th>SITE VISITS</th>
<th>• DOE Site Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DOE HQ (several; LANL, PNNL)</td>
<td>– LANL (7/05), PNNL (7/05), Penn (2005),</td>
</tr>
<tr>
<td></td>
<td>Intematix (1/06), UCLA (1/06), ROH</td>
</tr>
<tr>
<td></td>
<td>(3/06), Alabama (3/06)</td>
</tr>
<tr>
<td></td>
<td>• DOE HQ (several; LANL, PNNL)</td>
</tr>
</tbody>
</table>
FY07 SBH Go/No-Go Milestones

<table>
<thead>
<tr>
<th>Q1</th>
<th>Finish computational analysis of SBH regeneration options (chemical and electrolytic) that meet regeneration efficiency criteria and identify at least one process for laboratory demonstration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>Complete conceptual on-board system design that meets DOE 2007 targets (4.5 wt%, 1.2 kWhr/l, minimum flow rate of 0.02 g/sec/kW @ 50 kW).</td>
</tr>
<tr>
<td>Q3</td>
<td>Laboratory demonstration at least one of the SBH regeneration processes at an overall energy efficiency equal to or greater than 80% of the theoretical efficiency for that particular process.</td>
</tr>
<tr>
<td>Q4</td>
<td>Conceptual design of laboratory demonstrated SBH regeneration process and associated on-board system. Determine feasibility and provide a go/no-go recommendation for Sodium Borohydride (SBH) hydrolysis on-board storage system based on modeling and laboratory-scale experimental demonstration of energy efficient regeneration off-board.</td>
</tr>
</tbody>
</table>
Backup Slides: LANL Contributions
Accomplishments: Acid Catalysts

- **Strong Bronsted and Lewis acids enable H₂ release at room temperature**

$$\text{H}_3\text{NBH}_3$$

$$\text{HOTf} \quad \rightarrow \quad \text{initiation}$$

$$\text{H}_3\text{NBH}_3 \quad \rightarrow \quad \text{propagation}$$

$$\text{H}_3\text{NBH}_3$$

$$\text{H}_2\text{B}$$

$$\text{H}_2\text{NH}_3$$

$$\text{OTf}$$

$$[\text{H}_2\text{NBH}_2]_n$$

Growing chains

Reaction at 24°C with 0.1 eq triflic acid is ca. 20x faster than thermolysis in 1,2-dimethoxyethane at 85°C. Less than one equiv. H₂ formed due to unwanted by-product μ-aminodiborane.
Results: Limitation of Acid Catalysis by Formation of μ-Aminodiborane

When μ-Aminodiborane is formed, so is NH$_3$:

$$2 \text{H}_3\text{NBH}_3 \rightarrow \text{H}_2\text{B} = \text{NH}_2 + \text{NH}_3 + \text{H}_2$$

and NH$_3$ quenches the cations that propagate the catalytic chain

μ-aminodiborane formation results from unwanted reactions between initiating and propagating species:
Non-phosphine Catalyst: Ni(carbene)$_2$

Absence of sharp spectral features confirms linked borazine structure, > double dehydrogenation of ammonia-borane

$$\text{NH}_3\text{BH}_3 \xrightarrow{10 \% \ Ni(\text{carbene})_2} \xrightarrow{12 \text{ hrs at } 60^\circ C, C_6\text{D}_6} > 2 \text{H}_2 +$$
Borazine Formation Depends on Carbene

$^{11}\text{B}-^{1}\text{H}$ NMR in 2:1 diglyme:C_6D_6 after 15 minutes at 60 °C
Borazine Formation and Consumption

$^{11}\text{B}-\{^1\text{H}\}$ NMR of Ni(cod)$_2$ + 2 I-Mes in 2:1 diglyme:C$_6$D$_6$ at 60 °C

Borazine

20 mins

63 mins

NH_3BH_3

Kinetics of borazine consumption with this catalyst system also need investigation
Key Developments for Ammonia-Borane

- Inclusion in mesoporous materials alters rate and selectivity
- Acid catalysts can lead to multiple dehydrogenation from AB
- Rapid single dehydrogenation with Ir catalysts
- Multiple dehydrogenation of AB is facile with homogeneous electron-rich precious metal complexes
- The first examples of non-precious metal catalysts have been discovered
- Heterogeneous catalysts have been discovered (including rapid screening)
- Alternative reaction media can open up new reaction pathways
- Kinetics and mechanistic studies underway