Overview

Timeline
• Start: FY 05
• End: FY 09
• 25% complete

Budget
• Total funding
 – $1.1 M DOE share
 – $ 0.28 M cost share
• DOE FY05: $155K(partial)
• DOE FY06: $ 200 K

Barriers
• Weight and volume
• Efficiency
• Regeneration Processes

Amineboranes offer high H$_2$ storage capacity in principle, but thermal H$_2$ release is slow and inefficient. Effective catalysts for dehydrogenation/hydrogenation of BN compounds are needed.

Partners
DOE Center of Excellence for Chemical Hydrogen Storage
Objectives

• To understand the interaction of BN compounds with transition metals
• To develop Platinum group metal (PGM) based catalysts for dehydrogenation and rehydrogenation of BN compounds
• To determine thermodynamic parameters for hydrogenation/dehydrogenation
• To develop non PGM catalysts
Ammonia Borane as a H₂ Storage Material

Appropriate Thermodynamics

\[n \text{H}_3\text{NBH}_3 \rightarrow [\text{H}_2\text{NBH}_2]_n + n \text{H}_2 \quad \Delta H_{\text{calc}} = 8 \text{ kcal.mol}^{-1} \]

\[[\text{H}_2\text{NBH}_2]_n \rightarrow [\text{HNBH}]_n + n \text{H}_2 \quad \Delta H_{\text{calc}} = -3 \text{ kcal.mol}^{-1} \]

\[[\text{HNBH}]_n \rightarrow [\text{NB}]_n + n \text{H}_2 \quad \Delta H_{\text{calc}} = -9 \text{ kcal.mol}^{-1} \]

Near thermoneutral reactions important for reversibility.

Ammonia Borane as a H_2 Storage Material

DOE Storage Targets

<table>
<thead>
<tr>
<th>Target wt%</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Storage Potential of Ammonia Borane

<table>
<thead>
<tr>
<th>H_2 Released</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt% H_2</td>
<td>6.5</td>
<td>13.0</td>
<td>19.6</td>
</tr>
<tr>
<td>Product</td>
<td>$[H_2NBH_2]_n$</td>
<td>$[HNBH]_n$</td>
<td>$[NB]_n$</td>
</tr>
</tbody>
</table>
Dehydrogenation of Ammonia Borane

Thermal

\[\text{H}_3\text{NBH}_3 \xrightarrow{-\text{H}_2} \text{borazine} \]

Catalyzed

\[\text{H}_3\text{NBH}_3 \xrightarrow{[\text{Rh}]} \text{borazine} + 2\text{H}_2 \]

0.6 mol% catalyst

48 – 84 hours at 45 °C
Approach

• We seek to develop catalysts to accelerate dehydrogenation/rehydrogenation of amine boranes, eg.

\[n \text{ NH}_3\text{BH}_3 \underset{[\text{catalyst}]}{\xleftrightarrow{}} [\text{NH}_2\text{BH}_2]_n + n \text{ H}_2 \]
Results: Catalyst Choice

\[n \text{NH}_3\text{BH}_3 \xrightarrow{[\text{catalyst}] \text{THF, rt}} [\text{NH}_2\text{BH}_2]^n + n \text{H}_2 \]

- (POCOP)Ir(H)\textsubscript{2} already known to be an effective alkane (transfer) dehydrogenation catalyst.

- Amineboranes are isoelectronic with alkanes.

Evolution of Hydrogen

$$n \text{H}_3\text{NBH}_3 \xrightarrow{[\text{Ir}]} [\text{H}_2\text{NBH}_2]_n + n \text{H}_2$$

<table>
<thead>
<tr>
<th>Equivalents of H₂</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mol%</td>
<td>30</td>
</tr>
<tr>
<td>0.5 mol%</td>
<td></td>
</tr>
<tr>
<td>1.0 mol%</td>
<td></td>
</tr>
</tbody>
</table>
Characterization of Solid Product

\[n \text{NH}_3\text{BH}_3 \xrightarrow{[\text{catalyst}] \ \text{THF, rt}} [\text{NH}_2\text{BH}_2]^n + n \text{H}_2 \]

- Single well characterized non-volatile product
- All other reported reactions of this type lead to mixtures including borazine

Comparison with Previous Best Catalyst

<table>
<thead>
<tr>
<th></th>
<th>[Rh(1,5-COD)(µ-Cl)]₂</th>
<th>[H₂NBH₂]₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst Loading</td>
<td>0.6 mol%</td>
<td>0.5 mol%</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>H₂ evolved (equiv.)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Products</td>
<td>Borazine</td>
<td>[H₂NBH₂]₅</td>
</tr>
<tr>
<td>Time</td>
<td>48 – 84 hr</td>
<td>< 15 min</td>
</tr>
</tbody>
</table>

At least 200 fold increase in reaction rate over previous best.

• Eventually, the Ir catalyst converts to a dormant form:
Future Work

• In collaboration with PNNL, use calorimetry to accurately measure the heat of reaction for the dehydrogenation reaction. This is critical to validate computational work and to evaluate reversibility.
• Explore ligand variations with Ir for better catalysis.
• Define the mechanism of the reaction; use mechanistic insight to guide catalyst development
• Study rehydrogenation reactions.
• Develop non PGM catalysts with less expensive metals such as Fe, Co and Ni.
Summary

- We have developed an extraordinarily active dehydrogenation catalyst with activity orders of magnitude greater than the prior art.
- The catalyst is well defined and active indefinitely in the presence of hydrogen.
- In contrast to previous reports of complex mixtures, our Ir catalyst gives a single non-volatile BN containing product.
Backup Data: Characterization of Solid Product

\[n \text{NH}_3\text{BH}_3 \xrightarrow{\text{[catalyst]}} \text{THF, rt}} \xrightarrow{\text{[n catalyst]}} [\text{NH}_2\text{BH}_2]^n + n \text{H}_2 \]

- Solid state ^{11}B NMR.
- Infrared spectroscopy.
- Powder X-ray diffraction.

Fig. 5. 11B MAS NMR spectra of the three polymers recorded at 9.4 T.

Fig. 8. Schematic representation of the three polymers structures, based on NMR results.

Solid State 11B NMR of $[\text{BH}_2\text{NH}_2]_5$
IR of $[\text{BH}_2\text{NH}_2]_5$
XRD of $[\text{H}_2\text{NBH}_2]_5$
<table>
<thead>
<tr>
<th>Bond Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir(1)-B(1) 2.185(9)</td>
</tr>
<tr>
<td>Ir(1)-P(1) 2.3137(14)</td>
</tr>
<tr>
<td>Ir(1)-P(2) 2.3122(14)</td>
</tr>
<tr>
<td>Ir(1)-C(1) 2.032(4)</td>
</tr>
</tbody>
</table>
31P = 171.6 ppm
11B = 13 ppm

1H NMR in THF-d_8

$J = 26$ Hz
$J = 7.7$ Hz
$J = 5.7$ Hz
$J = 8.0$ Hz
IR spectrum of (POCOP)IrH(BH₂)

Solution in C₆H₆
Initial Rates

Reaction appears to be ca. first order in NH_3BH_3 and (POCOP)Ir(H)$_2$.

Rate = $k_{\text{obs}}[\text{NH}_3\text{BH}_3]$

($k_{\text{obs}} = k[\text{IrH}_2(\text{POCOP})]$)

- $y = 0.0205x - 0.0283$
 - $R^2 = 0.9977$
- $y = 0.0113x + 0.0395$
 - $R^2 = 0.9933$
- $y = 0.0087x - 0.0148$
 - $R^2 = 0.985$

$\ln([\text{NH}_3\text{BH}_3]_0/[[\text{NH}_3\text{BH}_3]_0-\text{H}_2])$
At lower catalyst loadings, rate slows as (POCOP)Ir(H)$_2$ is converted to (POCOP)IrH(BH$_2$).
DORMANT

\[
\text{Ir}^0 \text{H}_2 \quad \text{Ir}^+ \text{H} \quad \text{Ir}^+ \text{H}_2
\]

ACTIVE

\[
\text{Ir}^+ \text{BH}_2 \quad \text{Ir}^+ \text{BH}_2 \quad \text{Ir}^+ \text{BH}_2
\]

ACTIVE

\[
\text{Ir}^+ \text{BH}_2 \quad \text{Ir}^+ \text{BH}_2
\]

\[
\text{Ir}^+ \text{BH}_2 \quad \text{Ir}^+ \text{BH}_2
\]

[\text{Ir}(\text{BH}_2)\text{H}]^-

start

5 atm H_2; 2 hr

Soln degassed
Publications and Presentations

Critical Assumptions and Issues

• Computational work suggests that the hydrogenation/dehydrogenation of BN compounds is reversible. This needs to be verified by experiment. Thermodynamic data for these complexes is very limited.

• The formation of volatile borazine must be avoided for fuel cell applications. Most catalysts generate mixtures including borazine.

• The cost of amine borane must be brought down.