Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson
Future Energy Solutions
Air Products and Chemicals, Inc.
May 17, 2006

Contributors:
David Chalk (Machinery Design)
Nick Pugliese (Fabrication)
Mark Rice (Controls)

Project ID: TVP3

This presentation does not contain any proprietary or confidential information
Overview

- **Timeline**
 - Project Start 10/2002
 - Contract 5/2004
 - 90% Complete

- **Barriers**
 - High cost of hydrogen compression
 - Cost of hydrogen

- **Budget**
 - Total $690,875
 - DOE Share $345,438
 - APCI Share $345,438
 - 04 Funding $317,606
 - 05 Funding $373,088
 - 06 Funding – Earmark for continued development

- **Collaboration**
 - Tescom
 - Genesys
 - Weh
 - OPW
 - Walther
 - Spir Star
Objectives

● Primary
 – Develop a process design for a novel compressor to achieve near isothermal compression in a single cylinder with a compression ratio of 140:1
 – Develop mechanical design for novel compressor
 – Select a test hydraulic fluid
 – Machine/Manufacture Compressor parts & components
 – Assemble prototype system and test
 – Demonstrate operation of the system
 – Final report

● Secondary
 – Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling
Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
- Dynamic Modeling
- Component Design, Fabrication, and Testing
- Prototype
 - Site selected and compressor installed
 - Components in hand for test skid
- Long Term Testing
 - Site selection
 - Funding has been granted
Approach
Design Issues

- Compressor
 - Isothermal (~50 Deg F rise)
 - High pressure (~14,000 psig)
 - Single stage
 - Low cost

- Fueling Station
 - Lower the delivered cost of hydrogen
 - Composite vessels (ASME approval)
 - Lined steel vessels are $110,000/ft³ at 15000 psig
 - Alternate materials suitable for high pressure hydrogen service are high cost and difficult to machine.
 - Breakaway and fuel nozzle (Walther, OPW, and Weh)
 - Fueling codes
Safety

- Air Products Hydrogen Experience
 - Over 20,000 fills (75-100/week)
 - 8 fuel stations installed last year (40 total, 10 in construction)
 - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, purification/separation, reformers, electrolysis)

- Our fueling systems have undergone rigorous third party independent safety reviews
 - ABS Consulting – Singapore
 - BP – PHSER review
 - NASA - White Sands, NM
 - KHK/JHPGSL – Kagoshima, Japan
 - International Refinery Services – Singapore
 - Beijing Government – FSR Permitting
 - KGSL – Seoul, Korea
 - UL and Metlabs
<table>
<thead>
<tr>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Novel Hydrogen Compressor</td>
</tr>
<tr>
<td>2. Start Date</td>
</tr>
<tr>
<td>3. Contract Approval</td>
</tr>
<tr>
<td>4. 1.0 Feasibility/System Design</td>
</tr>
<tr>
<td>8. Program Review</td>
</tr>
<tr>
<td>9. 2.0 System Design</td>
</tr>
<tr>
<td>14. 3.0 Lab Installation and Testing</td>
</tr>
<tr>
<td>15. 3.1 Compressor and Valves</td>
</tr>
<tr>
<td>16. 3.2 Connectors and Flow Controls</td>
</tr>
<tr>
<td>17. 3.3 Composite Vessels</td>
</tr>
<tr>
<td>18. 3.4 Installation</td>
</tr>
<tr>
<td>19. 3.5 Testing</td>
</tr>
<tr>
<td>20. Program Review</td>
</tr>
<tr>
<td>21. 4.0 Field Installation and Operation</td>
</tr>
<tr>
<td>22. 4.1 Prototype Review and Plan</td>
</tr>
<tr>
<td>23. 4.2 Installation</td>
</tr>
<tr>
<td>24. 4.3 Operational Field Tests</td>
</tr>
<tr>
<td>25. 5.0 Program Management</td>
</tr>
<tr>
<td>26. 5.1 Final Report</td>
</tr>
<tr>
<td>27. 5.2 Management</td>
</tr>
</tbody>
</table>
Technical Accomplishments
Novel Compressor – Basic Concept

- **Isothermal**: Gas cooled during compression (50 ºF rise)
- **Single Stage**: Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance and temperature concerns (140:1 compression ratio).
- **Simple Fabrication**: No exotic materials or sophisticated machining.
- **Liquid Pump**: Inherently lubricates all dynamic seals, off the shelf pump
- **Small Footprint**: 3’x4’x7’
- **No External Cooling**: Radiator on hydraulic loop is all that is needed
- **Dynamic Gas Seals Eliminated**: No gas seals to atmosphere
- **Level Control**: Density control
- **Potential Issues**: Fluid carryover, high pressure storage vessels, intensifier seal wear

many typical machinery issues eliminated by liquid piston
Technical Accomplishments
Existing Technology

● Diaphragm Compressor
 – Metal diaphragm separates gas from oil
 – 300 deg F temperature rise
 – 20:1 standard compression ratio
 – Up to 350 barg is bolted, higher pressure requires bootstrap

● Hydraulic Intensifier
 – Floating piston with rings separates gas from oil
 – 300 deg F temperature rise
 – 8:1 standard compression ratio
 – Smaller cylinder allows higher discharge pressures (long stroke at low RPM)
Technical Accomplishments
Cylinder Pressure and Temperature

~ 50ºF temperature rise for 140:1 compression ratio
Technical Accomplishments
Cylinder Pressure and Temperature

![Graph showing cylinder pressure over time](image-url)
Technical Accomplishments

Dynamic Simulation Results

- Identified key operational issues and design parameters:
 - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
 - Liquid inventory management needs (pressure/flow regulation)

- Quantitative results on potential sources of inefficiency:
 - Hydraulic intensifier friction
 - Circuit DPs
 - Hydrogen solubility in compression fluid
 - Heat transfer limits and design of heat exchanger

- Process sensitivities to the following parameters studied:
 - Initial accumulator gas volume
 - Pump flow
 - Hydraulic intensifier flow
 - Valve flow coefficients

novel H_2 compressor unit is feasible
Technical Accomplishments
Pressure Analysis

- Automotive OEM’s are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 4-6 minutes) is the method with the highest commercial potential.
- Cascade fueling is the most often used method of achieving a low cost, fast fill. This is not possible at 700 barg with steel storage cylinders due to cost and hydrogen embrittlement concerns.
- To achieve full fills, cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen and communications between the vehicle and dispenser.
- ASME and Air Products requirements for relief valves (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

\[
\frac{700 \text{ B arg} \times 125\%}{90\%} = 972 \text{ B arg MAWP (14100 psig)}
\]

System pressure requirement is 14100 psig MAWP
Technical Accomplishments

Cost / Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Novel Compressor Prototype</th>
<th>Novel Compressor “Product” (10 per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$1.00</td>
<td>$.40 - $.50</td>
<td>$.25 - $.30</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td>In principle, will require less power. Testing to determine.</td>
<td></td>
</tr>
</tbody>
</table>

Flow = 70 scfh H2
Pin = 100 psig
Pout = 14,000 psig
Technical Accomplishments
Dispenser Update

- Dispensers have been updated to include a breakaway and nozzle shield.
- New HMI touchscreen allows use of a single panel for control and display.
- Class I Division 1, Group B design for dispenser.
- Control panel is separate enclosure rated for Class I Division 2, Group B.
- Dispenser components upgraded to 15,000 psig MAWP (700 barg).
- Fueling hose with 6:1 safety factor.
- New remote data acquisition system is being piloted (e-Ram).
Future Work

- Long term operational test.
- Determine overall costs.
- Determine feasibility of future use.
- Identify barriers and other work needed for 700 barg fueling.
- Final Report
Summary

Relevance: Develop a compressor that enables 700 barg fueling by lowering the cost of hydrogen.

Approach: Design a compressor that can dramatically lower the cost, maintenance, and power requirements for fueling.

Accomplishments: Developed a 700 barg dispensing system. Compressor is built and undergoing testing.

Collaborations: Work with industry leaders and develop required hardware to support 700 barg fueling.

Future: Continued testing and installation into a fueling station.
Interactions/Collaborations

- Air Products and Chemicals, Inc.
 - Future Energy Solutions
 - Advanced Systems Machinery
 - Advanced Controls
 - Cryomachinery
 - Dynamic Modeling
 - Corporate Safety

- Tescom
- Spir Star
- Barksdale
- Ashcroft
- Weh
- OPW
- Walther
tell me more
www.airproducts.com
Response to 2005 Reviewer’s Comments

- Potential hurdles not identified.

 We are working to identify the potential hurdles to compressor operation. A test plan will be executed to check each portion of the system prior to full operation.
Publications and Presentations

- May 2003 – DOE Peer Review
- May 2004 – DOE Peer Review
- May 2005 – DOE Peer Review
Issues

- Determined that the original Krytox oil could react with hydrogen. Switched to a mineral oil that is much lower cost and will act as a better lubricant.

- Identified some problem materials (17-4 ph steel) used for trim on some valves. Identified an alternate heat treatment to repair the items, if they have not been in hydrogen service.

- Will investigate other fluids and absorption vessels. There is potential for vapor carryover of the mineral oil.

- Need to monitor the intensifier seal rings for wear and check coalescer for wear products.

- Medium pressure component lead times have gone to 4x normal due to Hurricane Katrina and the rebuilding effort.
The most significant hydrogen hazard associated with this project is:

Drawing air into the compressor suction and compressing into the high pressure hydrogen storage vessels. Given the correct conditions, this could result in a high pressure flammable gas mix. Deflagration or detonation of this mixture could result in failure of the vessels.
Hydrogen Safety

Our approach to deal with this hazard is:

We have completed a Level of Protection Analysis that takes all physical and operating conditions into consideration to determine the probability of the event occurring. We also utilize a low pressure switch on the compressor inlet (hard-wired to PLC power). This pressure switch is functionally tested every quarter.