Hydrogen Purification Using Advanced Polymeric Membranes

Benny D. Freeman (Primary Contact), Haiqing Lin, Victor A. Kusuma, Scott T. Matteucci, Roy D. Raharjo, Scott D. Kelman
Center for Energy and Environmental Resources, University of Texas at Austin
10100 Burnet Road
Austin, TX 78758
Phone: (512) 232-2803; Fax: (512) 232-2807
E-mail: freeman@che.utexas.edu

DOE Program Officer: William Millman
Phone: (501) 903-5805
E-mail: william.millman@science.doe.gov

Objectives

Acid gases like CO\(_2\) are major impurities in gas streams containing hydrogen, and membrane-based separation may be utilized to remove these acid gases. One strategy for acid gas removal from mixtures with light gases takes advantage of the affinity of acid gases for polar groups, such as ether oxygens incorporated within polymeric membranes. Our research on cross-linked poly(ethylene oxide) revealed good separation within polymeric membranes. Our initial research has shown the viability of cross-linked poly(ethylene oxide) for CO\(_2\)/H\(_2\) removal from H\(_2\) and suggests that fundamental understanding of the relationship between network structure, polymer chemical composition and transport properties may yield even better materials.

Abstract

Rubbery cross-linked poly(ethylene oxide) facilitates separation of CO\(_2\) from mixtures with light gases and exhibits favorable CO\(_2\)/H\(_2\) separation properties. Because the separation is largely due to an affinity between CO\(_2\) and polar groups in the membrane, unlike conventional polymers, plasticization of the material by CO\(_2\) improves separation properties, especially at lower temperatures and high partial pressures of CO\(_2\). In addition, we have explored the separation of other polar and condensable gases from mixtures with lighter gases.

Progress Report

Our progress in cross-linked poly(ethylene oxide) (XLPEO) for CO\(_2\)/H\(_2\) separation is summarized in a recent paper [1]. Harnessing CO\(_2\)'s affinity for polar groups within the polymer membrane underlies CO\(_2\) removal using rubbery XLPEO [2], which has higher gas permeability than conventional membranes and exhibits weak size-sieving ability [3]. In these materials, CO\(_2\) is preferentially permeated over H\(_2\). Additionally, plasticization actually improves CO\(_2\)/H\(_2\) separation by further reducing size-sieving ability and increasing permeability [1].

XLPEO is formed by photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) [4]. Cross-linking eliminates crystallization of EO units that otherwise occurs in high molecular weight poly(ethylene oxide) (PEO), leading to reduced permeability [3] and reduced CO\(_2\)/H\(_2\) selectivity [1, 2, 5]. In addition, PEGDA can be copolymerized with monofunctionalized PEO-bearing acrylates, such as poly(ethylene glycol) diacrylate (PEGDA) [4] or poly(ethylene glycol) methyl ether acrylate (PEGMEA) [1, 4]. While gas solubility in the membrane does not change with copolymer composition [6], diffusivity through the membrane changes strongly with polymer composition [7]. For instance, increasing PEGMEA content in PEGDA copolymer increases the fractional free volume (FFV) [8, 9] and, in turn, the CO\(_2\) permeability and CO\(_2\)/H\(_2\) selectivity.

Plasticization effects are demonstrated through pure and mixed-gas studies of the PEGDA/PEGMEA copolymers, where CO\(_2\) and H\(_2\) permeability increases are observed with increasing CO\(_2\) partial pressure [1]. This effect is more significant at lower temperatures due to increased CO\(_2\) condensability, leading to higher CO\(_2\) sorption in the polymer [1, 6]. At low temperature and high CO\(_2\) partial pressure, the increase in CO\(_2\)/H\(_2\) selectivity is accompanied by high CO\(_2\) permeability [1], which takes the performance above the separation 'upper bound' [1]. Additional mixed-gas studies explored the removal of CO\(_2\) from other gases (such as CH\(_4\) [10] and C\(_2\)H\(_6\) [11]) using XLPEO, with similarly favorable performance. Plasticization effects are also observed when other polar impurities, such as H\(_2\)O and H\(_2\)S, are introduced [1].
Similar separation behavior was observed in cross-linked poly(propylene oxide) (XLPEO) made from acrylate analogues of poly(propylene glycol) [12]. However, although XLPEO in general displays slightly higher CO₂ permeability than pure cross-linked PEGDA, it has lower CO₂/H₂ selectivity than the XLPEO series, despite having higher FFV [12].

Our work on the gas transport behavior of nanocomposites is based on polymers such as 1,2-polybutadiene (PB). Neutral TiO₂ nanoparticles and basic MgO nanoparticles have been used to increase light gas solubility and permeability in heterogeneous membranes [13-16]. For instance, PB containing 27 vol.% TiO₂ has CO₂ permeability roughly 3 times higher than that of the unfilled polymer, while its CO₂/H₂ selectivity remains approximately equivalent to the unfilled polymer [14]; similar behavior was observed when MgO nanoparticles were added to PB [15]. Both the permeability and selectivity behavior in nanocomposite PB are due partly to higher light gas solubility in the nanocomposites than in unfilled PB.

Poly(1-trimethylsilyl-1-propyne) (PTMSP) is exceptional among glassy polymers for its very high free volume and gas permeability. Although its outstanding vapor/gas selectivity favors the transport of higher hydrocarbons from mixtures with H₂ and CH₄ [17], PTMSP is easily dissolved by many organic solvents. To improve its chemical stability, PTMSP can be cross-linked using bis-azides, but this method reduces gas diffusivity and permeability [17]. Adding nanoparticles such as TiO₂ and fumed silica to PTMSP increases its gas permeability due to an increase in diffusivity [13].

Future Work

Our future studies on XLPEO will focus on the effects of further structural modifications on transport properties. Specifically, the monomer EO length can be varied to modify XLPEO’s cross-link density (which affects chain dynamics [8]), polar content, or crystallinity. Given the significant difference in transport properties between PEGDA copolymerized with PEGA and with PEGMEA [7], another way to modify XLPEO structure is to change the terminal end-group of the monoacrylate copolymer.

We are also exploring incorporation of nanoparticles into XLPEO to further improve separation performance. As polymer-particle interaction is a significant determinant of the resulting membrane properties, it is important to understand this phenomenon to control the resulting properties.

References and Publications


Additional Publications Not Included as References