Hydrogen Safety: First Responder Education

Marylynn Placet
Pacific Northwest National Laboratory
May 18, 2007

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Project ID: ED-3
Overview

Timeline
- Project start date: 10/2004*
- On-going
- Percent complete, FY07: ~40%

Barriers Addressed
- Lack of Readily Available, Objective, and Technically Accurate Information
- Disconnect Between Hydrogen Information and Dissemination Networks
- Lack of Educated Trainers and Training Opportunities

Budget
- Funding in FY06: $325K
- Funding in FY07: $450K
 (100% DOE funded)

Partners
- PNNL is working with the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center on education and outreach

* Pre-FY06 funding came from another part of the Safety, Codes and Standards program element.
Objectives

► Long-term Objective:
Support the successful implementation of hydrogen and fuel cell demonstration projects and market transformation by providing technically-accurate and objective information about hydrogen to first responders*

► Objective for FY07:
Develop and disseminate education materials that pertain to hydrogen safety, aimed at the first-responder* audience

*Focus is on first responders (fire, law enforcement, and emergency medical personnel), who must know how to handle potential incidents; their understanding can also facilitate local project approval
Approach in FY07

ущ Task 1: Awareness-level Course (100% complete)

Complete (and maintain) a stand-alone, interactive, web-based “awareness-level” course -- “Introduction to Hydrogen Safety for First Responders”

(This also creates an information set that others can draw from to supplement their ongoing or planned education programs involved in the use of hydrogen and fuel cells)

ущ Task 2: Awareness-level Outreach (60% complete)

Conduct outreach activities related to the “Introduction to Hydrogen Safety for First-Responders” course, and disseminate related materials

ущ Task 3: Prop-based Course (5% complete)

Begin development of more-advanced course modules based on use of a mobile hydrogen fuel cell vehicle prop (under development in a companion project funded under the Hydrogen Safety, Codes and Standards program element)
Pre-FY07 Accomplishments: Awareness-level Course

- First responder outreach/interviews
- Internal DOE technical review
- Hydrogen Safety Panel review
- Pilot tests of course – given in person at HAMMER
 - August 2005 – industry experts, some first responders
 - April 2006 – first responders at Washington State Hazardous Materials Workshop Conference
Pre-FY07 Accomplishments: Awareness-level Course (cont’d)

Broad review of on-line course (Summer 2006) included more than 100 representatives from the hydrogen and emergency-response communities

- Auto companies
- Energy companies
- Fuel cell companies
- FreedomCAR and Fuel Partnership C&S Tech Team
- National C&S Coordinating Committee
- Hydrogen/fuel cell trade associations – NHA/USFCC
- National Laboratories
- Other Federal agencies – DOT, DHS/USFA
- Hydrogen-related state organizations/entities – CAFCP, NextEnergy
- International partners – IPHE, HySafe, JARI, EC
- Fire protection/prevention membership associations – IAFF, NASFM
- Individual firefighters and law enforcement personnel and other emergency response experts – Extrication.com
- College fire science programs
- Alternative fuel experts
- Others (universities/nonprofits) involved in education, graphics design
FY07 Accomplishments: Task 1 – Awareness-level Course

- Final version of web-based course (in both Flash and accessible HTML), incorporating comments received, launched on January 24, 2007
 - http://hydrogen.energy.gov/firstresponders.html
- Announcement of course distributed to:
 - Broad review list
 - State firefighter training centers
 - International Association of Fire Fighters
 - International Association of Fire Chiefs
 - Federal Law Enforcement Training Center
Awareness-level Course: Usage and Feedback

The first 11 weeks (Jan 24 – Apr 10) averaged ~240 unique visitors/course reviewers per week

Who’s Taking the Course?

- Fire prevention/protection community
 - Firefighters
 - Fire department education coordinators
 - Fire marshals
 - Fire plans examiners/inspectors
- Law enforcement
- Industry
- Universities
- Military
- Non-profits

Also UK, Japan, Taiwan, Canada, Sweden, Korea
Very informative, we all need to see this.
Lt. Gary Brown
Fort Worth Fire Dispatch Office

Good information. Quick study. Thanks!
Charles J. Gluck
Battalion Chief
Watsonville, CA
Fire Station #1

Great course.
Captain David L. Coble
In Service Coordinator
Fire Educational Services
Fort Worth Fire Dep’t

Very informative presentation.
Jim Sills
Planning, Building Inspection, and Code Enforcement Dep’t
Florence, South Carolina

Good online class!
George J. Fielden Jr., CFI
Deputy Fire Marshal
King of Prussia, PA

Did this course during my lunch hour and really enjoyed it. Nice slides and well written instructions. Thank you for a pleasant learning experience.
Susan Wulf
Firefighter
South Frontenac Fire Department
Course Overview

Introduction to Hydrogen Safety for First Responders

The Course Materials cover the following topics:

- Hydrogen Basics
- Transport & Storage
- Hydrogen Vehicles
- Hydrogen Dispensing
- Stationary Facilities
- Codes & Standards
- Emergency Response

You can view the topic modules in sequence or select them in random order using the top navigation bar.

A short quiz follows at the end of the course. User responses will be collected but will not be attributed to you as an individual.

Begin the Course
Example Course Module: Hydrogen Basics

Introduction to Hydrogen Safety for First Responders

Hydrogen Properties and Behaviors

- Colorless, odorless, tasteless, non-toxic, non-corrosive and non-poisonous
- Lightest and smallest element
- A gas at ambient conditions
- Fourteen times lighter than air; it rises and disperses rapidly
- Exists as a liquid at -423°F (-253°C)
- Volume ratio of liquid to gas is 1:848

Fuel Comparison

- Hydrogen is 14X lighter than air and 67X lighter than gasoline vapor.
- Hydrogen and natural gas have similar auto-ignition temperatures, almost 2.5X higher than the auto-ignition temperature of gasoline vapor.

Designing Safe Systems - Gaseous Hydrogen

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Potential Hazard</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorless, odorless, tasteless</td>
<td>Impossible for human senses to detect</td>
<td>Detection sensors</td>
</tr>
<tr>
<td>Low viscosity</td>
<td>Leaks</td>
<td>Leak detection systems</td>
</tr>
<tr>
<td>Very small atom (can be absorbed into materials)</td>
<td>Embrittlement in structural failure</td>
<td>Ventilation</td>
</tr>
<tr>
<td>Low volumetric energy density</td>
<td>Stored at high pressures</td>
<td>Storage container design</td>
</tr>
</tbody>
</table>

Basic properties

Comparisons with other fuels

Industry designs for safe systems
Example Course Module: Hydrogen Dispensing

- Refueling demonstration (video)
- Comparison to refueling with other fuels
Example Course Module: Stationary Facilities

Overview of bulk storage, stationary fuel cells, refueling stations

Common safety systems
Example Course Module: Emergency Response

- Recognition and identification of hydrogen equipment
- Detection of hydrogen releases, flames
- Initial protective actions
- Additional information sources

Battelle
Summary & Quiz

Most important “need-to-know” information in summary

13-question quiz tests knowledge/reinforces learning

<table>
<thead>
<tr>
<th>Introduction to Hydrogen Safety for First Responders Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hydrogen flames are nearly invisible in daylight.</td>
</tr>
<tr>
<td>[] True [] False</td>
</tr>
<tr>
<td>The correct answer is TRUE. Hydrogen burns with a pale blue flame that is nearly invisible in daylight. If sodium is present in the air, there may be a slight yellow color to the flame.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introduction to Hydrogen Safety for First Responders Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Hydrogen flames radiate heat comparable to hydrocarbon flames.</td>
</tr>
<tr>
<td>[] True [] False</td>
</tr>
<tr>
<td>The correct answer is FALSE. Hydrogen flames have low radiant heat, although the flame itself is just as hot.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introduction to Hydrogen Safety for First Responders Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. When released in an open environment, hydrogen will pool on the ground.</td>
</tr>
<tr>
<td>[] True [] False</td>
</tr>
<tr>
<td>The correct answer is FALSE. Hydrogen is 14% lighter than air, so if released in an open environment, it will rise quickly and disperse into a nonflammable concentration.</td>
</tr>
</tbody>
</table>
Accomplishments: Task 2 – Awareness-level Outreach

- Outreach plan completed
- Full version of course on CD and PDF (hard-copy) version available for free from DOE/EERE Information Center
 - 877-EERE-INF/877-337-3463
- Flyer produced to promote course at conferences, etc.
- Article submitted to Firehouse Magazine
- Three major first-responder conference events planned to demonstrate the course (Baltimore, Atlanta, and Orlando)
- “Cliffs Notes” version – laminated poster with critical response information for distribution to firefighters for display in fire stations
- Web-cast of course (500-1000 viewers at a time) in the planning stage
Accomplishments: Task 3 – Prop-based Course

- In early stages of development
- Some materials gathered for use in preparing course
- Discussions initiated with partners interested in endorsing and conducting the course

Prop Under Development

- Designed to realistically and safely simulate an actual emergency response event
- Mobile for on-site use (transported by trailer)
- Scenarios will demonstrate:
 - Safe approach to a fuel cell vehicle
 - Extinguishment of a compartment fire
- Will include typical FCV components (e.g. high-pressure H₂ lines)
 - Extrication techniques
 - Hydrogen venting during a compartment fire
Future Work

- Continue to address comments and to field questions on the Awareness-level course
- Complete planned outreach activities for Awareness-level course (publications, conferences, webcast)
- Complete planning and begin development of prop-based course (will continue into FY08)
- Conduct prop-based course in appropriate forums in the latter part of FY08
Project Summary

► **Relevance** – Education of first responders is a critical element of introducing hydrogen and fuel cell technology.

► **Approach** – Develop and disseminate education materials that pertain to hydrogen safety, aimed at the first-responder audience.

► **Accomplishments** – Web-based awareness-level course completed; very well-received. Outreach plan complete and a wide range of activities underway. Prop-based course planning has begun.

► **Future work** – Continue to maintain, refine, and disseminate Awareness-level course. Work with appropriate organizations to develop prop-based course.