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Overview

Timeline

Project start date: 6/1/2006
Project end date: 11/30/07
Percent complete: 65%

Budget

Total project funding: $618,750
= DOE share: $495,000
= Contractor share: $123,750

Funding received in FY06:
$228,066

Funding for FY07: $266,935

Partners
o USM only

Barriers
0 A. Durability

= Mechanical integrity, chemical stability,
cycle stability, morphological stability

o B. Cost

* Membrane/MEA manufacturing
=  Alternative membrane materials

o C. Performance

= Power density, electrode/membrane
interface, catalyst utilization, low/high
temp conductivity

Targets

Durability: 40,000 hrs (stationary)
5000 hrs (automotive)

Cost: $20/m? (Alternative materials)

Performance: > 0.1 S/cm amb. to
120 °C; 0.01 S/cm -20 °C



Objectives

o Overall Goal: To ascertain and integrate critical structure-property
information in order to develop methods that lead to significant improvements
in the durability and performance of PEMFC membrane materials. Specific
objectives include:

= Provide fundamental information regarding the origins of chemical and morphological
degradation during accelerated chemical attack and PEMFC operation,

= Investigate the effect of modifications in membrane and MEA processing parameters on
performance and durability, and

= Evaluate the role of controlled morphological features and reinforcing structures on
membrane performance and durability.

= [In addition, we will explore the performance and durability of new hydrocarbon-based
membrane materials as alternatives to the benchmark perfluorosulfonate ionomers.

o Focus in 2006-07: Investigations of membrane and MEA processing parameters on
performance and chemical durability; use of dielectric spectroscopy to probe
molecular motions impacted by degradation.



Approach

18-month project focused on the fundamental improvement of PEMFC
membrane materials with respect to chemical, mechanical, and morphological
durability, as well as the development of new membrane systems with
alternative chemical structures and compositions.

= 80% effort focused on perfluorosulfonate ionomer membrane materials.

= 20% effort focused on alternative hydrocarbon membranes
Task 1.0: Acquisition and installation of equipment (complete)

= Two fuel cell test stations

= Dynamic mechanical analyzer

Task 2.0: Development of characterization methods to evaluate the effects of
degradation and origins of performance characteristics (75% complete)
= Probes of chemical structure, morphology (over many length scales), molecular mobility,
mechanical properties
= As-received membranes used as controls

Task 3.0: Modifications of Nafion® Membranes and MEAs (60% complete)
= Membrane fabrication procedures
= Post-processing treatments
= MEA fabrication procedures
= [Inorganic modification of membranes

Task 4.0: Membrane Durability Studies (35% complete)
= Accelerated chemical attack (Fenton’s reagent)
= Fuel cell testing vs. time and/or conditions

Task 5.0: Evaluation of Alternative Membrane Systems (10% complete)



Technical Accomplishments/
Progress/Results

Our previous studies of chain dynamics in PFSIs during
thermal treatment provide important insight related to
processing-property relationships.

Thermal treatment of H™-form membranes may impact
chemical stability.

Control of electrostatic interactions and solvent-polymer
interactions during solution-processing of membranes and
MEA processing yields significant improvements in

PEMFC performance.

Dielectric spectroscopy has been used to demonstrate that
relaxation time distributions are related to MWD, thermal
history, and low level moisture content.

Hydrophilic silicate nanoparticles have been successfully
incorporated into the polar domains of Nafion®.



Condition

Water
Uptake, A

% Soluble in 50:50
EtOH/Water

Stability in Stirred
MeOH (60 °C)

Stability in Stirred
MeOH (60 °C)
Na*-form Films

AR112 As-received 17 1.3 Stable Stable
NRE 212CS As-received 43 7.3 Disintegrates <1 min. | Disintegrates <1 min.
Annealed 175 °C
NRE 212CS with DMSO 15 19 Stable Stable
. Cast from DMSO
SP 2 mil at 180 °C 51 23 Stable Stable
NRE 212CS | Annealed 100 °C 28 18 Disintegrates in 3 min. | Disintegrates in 3 min.
NRE 212CS | Annealed 125 °C 26 18 Disintegrates in 5 min. | Disintegrates in 3 min.
NRE 212CS | Annealed 150 °C 24 0.7 Disintegrates in 20 min. | Disintegrates in 5 min.
NRE 212CS | Annealed 175 °C 16 0.6 Stable Disintegrates in 5 min.
NRE 212CS | Annealed 200 °C 15 0.4 Stable Disintegrates in 5 min.

0 As-received NRE 212CS membranes tend to disintegrate in boiling MeOH.

0 Annealing at elevated temperatures (above the a-relaxation) improves solvent
stability. T (H")=110°C; T (Na®) =220 °C
0 Annealing has no effect at temperatures below the a-relaxation (i.e. Na*-form

samples).




Effect of Thermal Annealing on the Crystalline
Order in H" and Na*-form NRE 212CS
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0 Thermal annealing above T (H"-
form) apparently increases crystalline
order.

o Thermal annealing has no effect on
crystalline order in Na*-form samples.



Effect of Membrane Thermal Treatment on
PEMFC Performance
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0 Thermal annealing above T significantly improves the order within the ionic
domains, which consequently improves PEMFC performance.

AR112 = as-received (extruded) 2 mil 1100 EW Nafion® membranes; 5 cm? cell; Pt loading = 0.5mg/cm? on anode

and cathode (decal method); H,/O, stoich = 1.5/2.0; T, = 60 °C, T anode humidifier = 70 °C (100% RH), T
cathode humidifier = 55 °C (80% RH). 8



Fenton’s Test on Annealed NRE 212CS

Dry 15hr F- 30hr F- 45hr F- 60hr F- 75hr F- Dry wt after

weight (g) (ppm) (ppm) (ppm) (ppm) (ppm) HClwash % wtloss
H+ Unannealed 0.352 2.82 6.64 8.07 7.46 6.93 0.349 0.68
H+212CS 100C 1hr 0.345 3.29 7.12 8.15 7.32 6.98 0.342 0.80
H+212CS 150C 1hr 0.340 9.05| 13.24| 13.71| 13.29] 12.01 0.334 1.69
H+212CS 200C 1hr 0.344| 28.08 31.16] 30.04| 28.54| 27.87 0.295 14.08
Na+ Unannealed 0.340 5.92 6.58 6.12 5.96 5.16 — —
Na+212CS 100C 1hr 0.337 5.61 6.53 6.20 5.70 5.63 — —
Na+212CS 150C 1hr 0.356 5.95 6.72 6.39 5.68 5.35 — —
Na+212CS 200C 1hr 0.347 7.16 7.24 6.45 5.86 5.46 — —

o H'-form samples progressively darken with annealing temperature and time.

o For the H+ samples, this thermal degradation apparently enhances
susceptibility to chemical attack.

0 No thermal degradation observed for ionized Nafion® (Na*-form), and the
fluoride release remains relatively constant with annealing temperature.



Effect of Mixed Counterions
Composition during Casting
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0 Solution-processing above T, (TBA*-form) improves PEMFC performance,
relative to casting below T  (Na™-form).

Solution processed Nafion® membranes (180 °C) 2 mil thick 1100EW with mixed TBA* and Na* counterions,
reacidified in 4M Sulfuric acid in Methanol; Sem? cell; Pt loading=0.5 mg/cm? on anode and cathode (decal
method); H,/O, stoich.=1.5/2; T _,=60°C, T =70°C (100% RH), T =55°C (80% RH)

cell anode humidifier cathode humidifier
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Effect of Membrane Casting Temperature
(TBA* and Na* form Nafion®)

Cell Potential (V)
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o Casting above T, (TBA*-form), PEMFC performance decreases with
increasing temperature.

o Casting below T (Na™-form), PEMFC performance increases with decreasing
temperature.

Solution processed 2 mil thick 1100EW Nafion® membranes in Na* form, reacidified in 4M Sulfuric acid in
Methanol; S5cm? cell; Pt loading=0.5 mg/cm? on anode and cathode (decal method); H,/O, stoich.=1.5/2;
T, =60°C, T =70°C (100% RH), T =55°C (80% RH)

anode humidifier cathode humidifier 1 1



1.0

Effect of Catalyst Ink Solvent Composition on
PEMFC Performance (Catalyst-coated GDLs)
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0 Free chains and large aggregates in the dispersion (used in the ink) yield relatively poor
performance.
o Optimum performance observed when aggregate size matches pore size in carbon particle

supports.

AR112 = as-received (extruded) 2 mil 1100 EW Nafion® membranes; 5 cm? cell; Pt loading = 0.5mg/cm? on anode
and cathode (ink painted on GDLs); H,/O, stoich = 1.5/2.0; T, = 60 °C, T anode humidifier = 70 °C (100% RH), T
cathode humidifier = 55 °C (80% RH); GDL: Toray TGP-H-090.
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Dielectric Spectroscopy
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log,f log,,
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Broadband
Saﬁfle l phase angle Dielectric
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T between i and v
I
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Observe
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T A Powerful Diagnostic Tool;



e“vs.fand t ‘response surface’
Nafion® NRE 212 acid films as received/cleaned
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DS Real Time Studies of Membrane Drying

AR Nafion® NRE 212 at T=70 ° C under N, with f-sweep iterations.
A) after ~2.5h and B) ~15h of testing.

Data fitted to Havriliak-Negami eqn (conditioned in 6.4%RH for 4d before testing)
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Nafion® Degradation

Four sample preparations:

o  As-recetved cleaned (HNO; reflux, DI water soak, dried)

o Degraded 75h w/ Fenton’s Reagent—no post degradation
treatment

o Degraded 75h w/ Fenton’s Reagent—washed with HCI
o Placed in Fenton’s reagent soln w/o H,O, (iron only)

Samples stored < 0.2% RH 4d prior to dielectric
spectroscopic testing:

o Part 1. Constant T = 70 "C for 7.5h w/ frequency sweep

o Part 2. Temperature cycles from -130 to 200 "C in 10 °C
temperature increments

Objectives:

o Understand bound moisture and Fe' ion incorporation
o Understand/quantify Nafion® degradation
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Permittivity"
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Degraded vs Non-degraded Nafion®:
Comparisons at 60 °C
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Nafion® NRE 212 H" films degraded in
Fenton’s reagent 75h vs. untreated film
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Leach out low molecular weight (M) fragments during Fenton treatment —
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High temperature Nafion®/silicate
Nanocomposite FC Membranes
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Inorganic Modification of Nafion
Membranes: Effect of Water: TEOS Ratio
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Inorganic Modification of Nafion
Membranes: Effect of Water: TEOS Ratio

. FTIR/ATR Spectroscopy
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Future Work

Timeframe: May — November 2007
Characterize structural/physical changes after chemical degradation

= Spectroscopic analysis, titration, extraction/characterization of
soluble components

Optimize morphological parameters for performance and durability
= Membrane processing with tailored morphological control
= Post-processing treatments for enhancement of stable morphology

Optimize MEA preparation procedures for performance and
durability

Characterize performance and durability of organic/inorganic
composites

Complete synthetic procedures for new hydrocarbon-based PEMFC
membranes
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Summary

Chemical and physical properties are significantly affected by
thermal treatments. Annealing enhances solvent stability, but
may compromise chemical stability in H*-form Nafion®.

Solution-processing conditions have a significant effect on
membrane and MEA performance.

= Likely to be related to morphology

= Durability of enhancements must be evaluated.

Broadband dielectric spectroscopy: powerful tool in
characterizing molecular motions in Nafion® and chemical
degradation.

* Connection between relaxation time distribution and degraded
molecular weight distribution

= Spectra sensitive to Nafion® thermal history and low level moisture
content

Hydrophilic silicate nanoparticles successfully incorporated
in polar domains of Nafion®.
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