Development of Low-cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications

2007 Hydrogen Program Annual Review

Jung Yi, David Mountz, James Goldbach, Tao Zhang, Scott Gaboury and Michel Fouré
Arkema, Inc.
May 16, 2007

Project ID#: FC9

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start Date: Oct. 2003
- End Date: June 2007 (with no-cost extension)

Budget
- Total Funding
 - DOE: $5,771K
 - Partners: $2,241K
- FY2006 Funding
 - $2,205K
- FY2007 Funding
 - $2,063K

Barriers
- B: Cost
 - $20/m² (Membrane Target)
 - $10/kW (MEA Target)
- A: Durability
 - 5000 hours (Target)

Partners
- Arkema:
 - Georgia Tech
- Johnson Matthey Fuel Cells
- UTC Fuel Cells
 - University of Hawaii
Objectives

● Overall
 ● Develop low-cost and durable membrane and MEA that can meet DOE targets and help drive the commercial reality of fuel cells

● 2006-2007
 ● Development and characterization of new-generation membranes
 ■ Morphology
 ■ Transport Properties
 ■ Mechanical Properties
 ■ Chemical Stability
 ● MEA optimization
 ● Durability testing of the membrane in fuel cells
Arkema’s Approach

- Polymer blend system to decouple H⁺ conductivity from other requirements
 - Kynar® PVDF
 - Engineering thermoplastic
 - High chemical resistance and electrochemical stability
 - Provide mechanical support
 - Polyelectrolyte
 - H⁺ conduction
 - Physical properties unimportant

- Robust blending process
 - Applicable for various polyelectrolytes
 - Capable of morphology and physical property control

- Lower cost approach compared to PFSA
 - Kynar® PVDF - commercial product
 - Polyelectrolyte – hydrocarbon based

- Feasibility demonstrated (M31)
Approach: Project Progress

Development of Polyelectrolytes
- Identified the requirements
- Down-selected a structure
- Synthesized sulfonated copolymer

Formulation of Membranes
- Validated blending versatility
- Demonstrated comparable properties
- Characterized morphology
- Developed high throughput methods
- Scaled up to pilot

MEA & Fuel Cell Testing
- MEA optimized
- Demonstrated comparable FC performance to PFSA
- High decay rate observed in long-term testing

Large Cell Validation
- Validation of BOL performance
- UEA fabrication
- UTC cell testing (400cm² active area)

M31 Generation
- Elucidated M31 failure mechanisms
- Developed ex-situ PE screening method
- Synthesized new generation chemically stable PE

M41 Generation
- Successful membrane formulation
- Property & morphology characterization
- Scale up to pilot

Future Work
- MEA fabrication
- UTC cell testing (400cm² active area)

Completed
- (Y06-Y07)**

In Progress
-
M41 Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Nafion®111</th>
<th>M41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Thickness (μm)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Equivalent Weight</td>
<td>1100</td>
<td>800</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Water Uptake (%)</td>
<td>37</td>
<td>60</td>
</tr>
<tr>
<td>X,Y Swell (%)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Thickness Swell (%)</td>
<td>14</td>
<td>10-15</td>
</tr>
<tr>
<td>Tensile Stress Break (MPa)</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>103</td>
<td>95</td>
</tr>
<tr>
<td>Tear Strength(lbf/in)</td>
<td>404</td>
<td>934</td>
</tr>
<tr>
<td>Tear Propagation (lbf)</td>
<td>0.004</td>
<td>0.018</td>
</tr>
</tbody>
</table>

- **M41** shows equal/better mechanical properties than **Nafion® 111**
M41 Transport Properties

- **Equivalent proton conductivity compared to Nafion**

<table>
<thead>
<tr>
<th>Material</th>
<th>Proton Conductivity (mS/cm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>M41</td>
<td>130</td>
</tr>
<tr>
<td>M41 (process optimized)</td>
<td>150</td>
</tr>
<tr>
<td>Nafion®</td>
<td>162</td>
</tr>
</tbody>
</table>

- **Superior gas barrier property than Nafion membranes**

<table>
<thead>
<tr>
<th>Material</th>
<th>H₂ permeation rate (mA/cm²)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>M41</td>
<td>0.5</td>
</tr>
<tr>
<td>Nafion®111</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* by 4-point in-plane AC measurements in water at 70°C
** by electrochemical method at 80°C with 100% RH
Morphology Characterization and Control

- Range of morphologies possible
- High-resolution TEM characterization (collaboration with ORNL) to gain understanding of structure and property
M41 Chemical Stability

- In-house developed *ex-situ* sulfur loss test

- M41 shows less than 1% sulfur loss over 2000hr.
Fuel Cell Testing: BOL Performance

H₂/O₂, Fully Humidified, 80°C, 0 psig, 0.4 mg/cm² Pt on C, 25cm² cell

- Comparable in-cell performance to Nafion® 111 demonstrated
Fuel Cell Performance Diagnostics

- Ohmic resistance (R_{ohm}) by: (1) hydrogen pump and (2) current interruption
- Decouple the proton resistance (R_{H+}) and the electron resistance (R_{e-}) by

- Effect of temperature

\[R_{ohm}(T) = \frac{t_m}{k_m(T)} + R_{e-} \]

- Effect of membrane resistance

- Good interfacial contact between M41 and electrodes demonstrated

High Temperature Excursion Stability

- Stable membrane performance is shown after 8 hrs at 120°C
- Electrode degradation is shown by higher O₂ gain and 20% loss of ECA
OCV Durability: Hydrogen Crossover

- **Nafion® 111IP membrane** failed around 100 – 150 hrs
- **M41 membrane** exhibits superior chemical stability in fuel cells

Steady state OCV (H$_2$/O$_2$), 25cm2 single cell (3-serpentine), 90°C cell temperature, 30%RH, 1 l/min dry gases, no back pressure
OCV Durability: Effect of Electrical Short

- Electrical short resistance is increased for both Nafion® 111IP and M41.
- OCV is dictated by the shorting resistance for both membranes.
 - Probably caused by the roughness of gas diffusion electrodes.
 - M41 showed no changes in H₂ crossover current density.
OCV Durability: Effluent Water Analysis

- M41 shows significantly lower F⁻ release rates
- M41 shows similar sulfate release rates to Nafion® 111IP
OCV Durability: Post-Mortem Analysis

- Nafion® 111IP failed due to chemical degradation leading to local pin-holes (no membrane thinning observed)
- M41 exhibited no sign of membrane failure due to chemical degradation after 400+hr OCV durability test
 - No change in gas crossover rates
 - No change in membrane thickness
 - No change in proton transport resistance
 - Identical performance after OCV test
Future Work

- Complete accelerated in-cell durability tests (Arkema, JM)
 - Continue OCV durability test
 - RH cycle durability test is in progress
 - Voltage cycle durability test is in progress

- High-resolution morphology characterization for structure-property understanding (ORNL, Arkema)

- Complete large-size fuel cell testing
 - Prepare 400cm2 MEAs (JM)
 - Testing in UTC Fuel Cell hardware (U of Hawaii and UTC Fuel Cells)

- Develop new-generation polyelectrolytes (new grant award)
 - Optimized for Low RH operation
 - Higher temperature stability (up to 120$^\circ$C)
Summary

- Arkema developed Kynar®/Polyelectrolyte blending technology and produced membranes suitable for fuel cells (low cost and durability)
 - Equivalent fuel cell performance to Nafion membranes
 - Better mechanical properties
 - Lower gas permeability
 - Pilot scale production

- The new generation membrane (M41) demonstrated superior membrane durability in *in-situ* OCV test
 - At least 4x increase in OCV durability versus Nafion® 111
 - No increase in gas crossover rate after 400+ hrs
 - Significantly lower F- release rate compared to Nafion® 111
 - Humidity cycle and load cycle tests are underway

- Demonstrated morphology characterization and control capability
 - Further work is in progress to understand structure/property relationships