Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions

RIT Satish Kandlikar, Navalgund Rao, Owen Lu
GM Thomas Trabold Jon Owejan
MTU Jeffrey Allen

May 16, 2007

ID # FCP22

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

- Start date: 03/01/2007
- End date: 02/28/2010
- Percent complete: 3%, 1 month/3 years

Barriers

- Barriers addressed:
 - C: Performance
 - D: Water transport within the stack
 - E: System thermal and water management

Budget

- Total project funding
 - DOE: $2.68M
 - Contractor: $0.8M
- FY06: $1.4M
- FY07: $0.99M

Partners

- Collaborations:
 - RIT, GM, MTU
- Project management:
 - Monthly teleconferences
 - DOE quarterly progress reports
 - DOE meetings and conferences
Objectives

Overall: To gain a fundamental understanding of the water transport processes in the PEMFC stack components

To minimize fuel cell water accumulation while suppressing regions of dehumidification by an optimized combination of:
- New gas diffusion layer (GDL) material and design
- New bipolar plate (BPP) design and surface treatment
- Anode/cathode flow conditions

2007: Novel characterization techniques and baseline performance characterization:
- Ex-situ and in-situ visualization and characterization
- Fluorescence microscopy
- Neutron radiography
- Local current density and HFR distribution
Approach

Experimental: This project will provide a framework for combining component-level research into workable fuel cell stack concepts.

Fundamental research ➔ Fuel cell concepts

Component-Level Study
- GDL
 - Structure
 - Morphology
 - Wettability
- Flow channel
 - Size and Geometry
 - Header design
 - Surface treatment

Combinatorial Study
- Water transport within GDL
- Fluorescence microscopy
- Infrared imaging
- Water transport on the GDL surface and in channels
- High speed visualization
- Neutron radiography
- 3-D microscopy

Fuel Cell-Level
- Anode/cathode flow conditions
- Optimized combination of GDL, BPP and flow conditions
- Freeze-thaw performance

Modeling: The ex-situ experimental data and modeling efforts of the component-level studies will be integrated into a comprehensive two-phase flow performance and stability engineering model.
Collaborative Research Plan

- **Participants**
 - R·I·T
 - GM
 - Michigan Tech

- **3 year, $3.5 Million Program**
 - Visualization of Fuel Cell Water Transport and Performance Characterization

- **Deliverables**
 - Optimized materials, design features and operating parameters under normal & freezing conditions

- **Impact**
 - Low-cost, robust systems
 - Faster commercialization
 - US technological leadership in fuel cell industry

- **Gas Diffusion Layer Structure**
- **Two-Phase Flow in GDL / Channel Interface**
- **HFR distribution result**
- **Neutron Radiograph**
Baseline System Definition

1. Flow Field

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data or constraints considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode channel / land width</td>
<td>• Published channel / land optimization studies
• Minimize gas diffusion layer intrusion</td>
</tr>
<tr>
<td>Anode channel / land width</td>
<td>• Diffusion coefficient of (H_2) relative to (O_2)
• Maintain large land-to-land contact area to reduce ohmic loss
• Maintain high volumetric flow rate per channel</td>
</tr>
<tr>
<td>Channel depth</td>
<td>• DOE FreedomCAR volumetric power density target = 2 kW/L
• Bipolar plate thickness and manufacturing tolerance</td>
</tr>
<tr>
<td>Channel pattern</td>
<td>• Minimize channel water accumulation
• Minimize reactant pressure drop
• Insensitivity to plate misalignment</td>
</tr>
<tr>
<td>Active area aspect ratio</td>
<td>• Assumed 200V stack (0.6V per cell) at peak power
• Assumed 40% stack volume in gas/coolant headers
• Square active area, from which a 50 cm² “slice” is defined</td>
</tr>
<tr>
<td>Channel – to – header geometry</td>
<td>• OEM patent literature on methods for directing flow around plate seals</td>
</tr>
</tbody>
</table>
Baseline System Definition (cont’d)

2. Gas Diffusion Layer (GDL)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data or constraints considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>• Commercially available material, with commitment from manufacturer to supply for at least 3 years</td>
</tr>
<tr>
<td>Substrate format</td>
<td>• Roll-good, for relevance to scale-up to high-volume manufacturing</td>
</tr>
<tr>
<td>Treatment</td>
<td>• Internally developed hydrophobic treatment and microporous layer (MPL) formulation, so that material and application process parameters can be independently controlled</td>
</tr>
<tr>
<td>Performance</td>
<td>• At or near benchmark performance under relatively dry (~80% exit RH) and wet (~120% exit RH) conditions</td>
</tr>
</tbody>
</table>

3. Membrane electrode assembly (MEA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data or constraints considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>• Commercially available material, with commitment from manufacturer to supply for at least 3 years</td>
</tr>
<tr>
<td>Pt loading</td>
<td>• Thrifted platinum content, moving toward DOE target of 0.25 mg/cm² total</td>
</tr>
<tr>
<td>Performance</td>
<td>• At or near benchmark performance under relatively dry (~80% exit RH) and wet (~120% exit RH) conditions</td>
</tr>
</tbody>
</table>
Ex-situ Experiment Design

| Objectives | 1. To study two phase flow stability in each channel and establish two phase flow stability criteria.
<table>
<thead>
<tr>
<th></th>
<th>2. To study water distribution in each channel.</th>
</tr>
</thead>
</table>
| **Measurements** | 1. Water flow rate and pressure.
| | 2. Gas flow rate and pressure drop.
| | 3. Direct view of water droplets and films, their distribution on GDL surface, and the water film thickness measurement.
| | 4. Simultaneously visualize parallel channel flow dynamics. |
| **Experimental setup** | 1. Transparent BPP.
| | 2. Top and side view by high speed camera.
| | 3. Infrared camera and imaging to detect presence of water film and measure the water film thickness.
| | 4. Mass flow rate and pressure drop at inlet and outlet sections. |
Water Droplet Visualization

- High speed imaging
- GDL/channel studies
- Single-channel, multiple channel and header flows
- Flow patterns, instabilities and pressure drop
GDL Component Studies — Material Properties

- **Contact Angle Studies:**
 - Developed Koehler illumination technique
 - Developing image processing technique
 - Developing GDL handling protocol to address contamination (see center image)
 - Started contact angle measurement calibration
 - Beginning GDL parametric studies

- **Structure and Morphology Studies:**
 - Students being trained on SEM’s
 - Developing handling/preparation protocols for SEM samples

Three water drops on a GDL, each with a different volume – each drop has a different contact angle due to surface contamination.
GDL Component Studies — Capillary Transport Model

2D Network Simulator

Boundary Conditions

Main Code

Time Integration (In development)

Linear System

![Diagram of 2D Network Simulator with nodes and connections labeled as Boundary Conditions, Main Code, Time Integration (In development), and Linear System.](image)
2D Network Simulator: Preliminary Results

M is the viscosity ratio
Ca is the Capillary number

M=10 Ca=∞

M=0.1 Ca=∞

M=0.1 Ca=1 θ>90

M=0.1 Ca=10 θ<90

M=0.001 Ca=10 θ<90
Future Work (FY07 - FY08)

• **Baseline performance characterization**
 - Ex-situ multi-channel performance (RIT)
 - Fuel cell experiments with visual access (RIT)
 - Freeze-thaw experiments with neutron radiography (GM)
 - Post-mortem analysis of baseline material set (MTU)

• **Parametric studies at component-level**
 - GDL component studies (MTU)
 - Channel component studies (RIT)

• **Combinatorial assessment on ex-situ apparatus**
 - Ex-situ multi-channel flow experiments (RIT)
 - Multi-channel two-phase flow model (RIT/GM/MTU)

• **Decision point #1 after combinatorial ex-situ assessment**
Summary

Impact:
- Low-cost, robust PEM fuel cell system
- Faster fuel cell commercialization

Approach:
- A framework for combining component-level research into workable fuel cell stack concepts
- Intense collaboration between RIT, GM and MTU

Deliverables:
- Optimized materials, design features and operating parameters under normal and freezing conditions
- Fundamental understanding of water transport processes in PEM fuel cells
- Novel characterization techniques