Kettering University Fuel Cell Project

Susanta K. Das and K. Joel Berry

Center for Fuel Cell Systems and Powertrain Integrations
Kettering University
May 15, 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Barriers</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start – July 2006</td>
<td>Barriers</td>
<td>Bei-Tech – Polymer Membranes</td>
</tr>
<tr>
<td>Finish - June 2008</td>
<td>➢ A. Materials and manufacturing costs</td>
<td>Umicore Fuel Cells</td>
</tr>
<tr>
<td>40% Complete</td>
<td>➢ B. Membrane performance</td>
<td>- MEA Development</td>
</tr>
<tr>
<td></td>
<td>➢ C. Water and thermal management</td>
<td></td>
</tr>
</tbody>
</table>

Budget

- **Total project funding**
 - DOE - $600K
- **Funding received in FY06**
 - $150K
- **Funding for FY07**
 - $300K
- **Funding for FY08**
 - $150K

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Objectives

| Overall | • Development of Novel Proton Exchange Membranes (PEM) for Fuel Cells
| | • Development of CFD porous flow model for PEM fuel cells for improved water and thermal management |
| | **2006**
| | • Low-cost, high-performance membrane
| | - Design and Manufacturing Processes
| | - Experimental Testing and Performance Validation |
| | **2007-2008**
| | • Low-cost, high-performance membrane
| | - Real-time membrane testing for single cell and stack
| | - Real-time testing for stability and materials properties
| | • Integrated multiphase CFD model for PEM Fuel Cell
| | - Complete unit fuel cell performance evaluation
| | - Performance evaluation for fuel cell stack |

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Approach

Plan & Approach

- **Task 1: New Fuel Cell Membrane**
 - Literature survey
 - Theoretical analysis and model development
 - Inexpensive materials search

- **Task 2: Chemical modification**
 - Modification of polymer backbone
 - Increased proton conductivity
 - Reduced resistance than peer

- **Task 3: Thermal stability and Water management**
 - Test of water uptake and thermal stability
 - Improved durability and efficiency
 - Test of stable proton conductivity

- **Task 4: CFD multiphase model for PEM fuel cell**
 - Literature survey
 - Developed CFD multiphase mathematical model
 - Developing graphical user interface

90% Completed
80% Completed
70% Completed
40% Completed

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Approach

Approach Overview

- We used novel patented polymer Chain modification process through chemical treatment onto an inexpensive robust polymer backbone

- Patented Polymer backbone modification technology
- New SAS FC Membrane
- Performance Validation

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Accomplishments/Progress/Results

- Membrane’s proton exchange capacity

- Induction time (time required to start proton transfer) is 85% less than Nafion 212
- Higher proton transfer rate than peer membrane (Nafion 212) materials
- Steady proton transfer capacity at higher rate than Nafion 212 for extended period of time
- Very inexpensive membrane materials and easy to manufacture than Nafion 212
Accomplishments/Progress/Results

- Membrane conductivity and resistance

- 80% increased in proton conductivity than peer materials
- 85% increased in induction time
- Very low resistance in per unit area than peer (Nafion 212) materials
- Ability to quickly reach equilibrium state

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Accomplishments/Progress/Results

- **Comparison of membrane quantities**

<table>
<thead>
<tr>
<th>Membrane Type</th>
<th>Maximum protons transfer capacity (moles/min.)</th>
<th>Average protons transfer capacity (moles/min.)</th>
<th>Induction time (min.) (start of proton transfer)</th>
<th>Resistance (ohm-cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafion 212</td>
<td>1.0515</td>
<td>1.03538</td>
<td>99.931</td>
<td>0.012707</td>
</tr>
<tr>
<td>SAS type I</td>
<td>1.8140</td>
<td>1.81175</td>
<td>15.534</td>
<td>0.007261</td>
</tr>
<tr>
<td>SAS type II</td>
<td>1.7174</td>
<td>1.71080</td>
<td>30.042</td>
<td>0.007690</td>
</tr>
</tbody>
</table>

- 80% higher proton transfer rate than Nafion 212
- 50% less membrane resistance than Nafion 212
- Less induction time than peer
Accomplishments/Progress/Results

• Membrane Water Uptake

• Experimental test is in progress. We will present this result during poster presentation
Accomplishments/Progress/Results

• Membrane Swelling Measurement

• Experimental test is in progress. We will present this result during poster presentation
Accomplishments/Progress/Results

- **Membrane Thermal Stability**

 • Experimental test is in progress. We will present this result during poster presentation
Future Work

• Future Work (FY07-FY08)

 • Performance improvement of SAS membrane

 - Apply cross-linking agent to make membrane chemically inert towards reactant gases
 - Test thermal effect and life-cycle sensitivity
 - Map membrane water history

 • Development of integrated CFD porous media multiphase model

 - FEA graphical user interface for unit PEM fuel cell and stack
 - Effect of flow, heat transfer and electrochemistry on fuel cell performance
 - Improve design of single cell and stack
 - Develop 3D surface map for effective control of fuel cell systems
Future Work

- Future Work (FY07-FY08)

 - Explore other avenues for membrane performance enhancement
 - Replace sulfate group with phosphate group for better water management
 - Real-time test of membrane performance with single cell and stack
 - Membrane properties calculations and validation with peers

 - Improve design of unit cell and stack based on CFD modeling results
 - Perform parametric study for design sensitivity analysis
 - Calculation of optimal combination of operating conditions based on CFD surface map
 - Identify water production and management precursors
 - Identify self-humidifying mechanism for effective fuel cells water management

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Summary

Project Summary

Relevance: Help to develop advanced membrane materials for fuel cell applications

Approach: Using patented polymer structure modification technology, develop and experimentally characterize new membrane properties and validated with peers

Technical Accomplishments and Progress: Advanced fuel cell membrane manufacturing procedure has been developed. Mathematical formulation for CFD multiphase porous media flow model is completed

Technology Transfer/Collaborations: Active partnership with Bei-Tech, Unicore fuel cell, presentations, publication and patents

Proposed Future Research: Seek answers by identifying factors limiting PEM fuel cell performance

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Additional Slides 1

- Rate of change of pH in water cell

![Graph showing rate of change of pH in water cell for SAS membrane type I and type II.]

- Concentration of protons (H\(^+\)): 10\(^{-\text{pH}}\)
• Rate of change of pH in water cell

• Concentration of protons (H⁺): 10⁻ᵖᴴ