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Overview

For SBIR Phase I & II Project

• Project start date: 07-14-2004 (Phase I)
• Project end date: 07-12-2007
• Percent complete: 83% (Phase II)

• Barriers addressed
– System thermal management

• Total project funding
– DOE share: $847K (Phase I & II)
– Contractor share: $100K (to 

Lehigh Univ.)

• Funding received in FY06: 
$415K (Phase II)

• Funding for FY07: $242K 
(expected)

Budget
• Interactions/ 

collaborations:
Lehigh University (Subcontractor)
Penn State University (Subcontractor)
Plug Power (Supporting Activities)

Partners

Timeline Barriers
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Objectives
To develop and validate a fuel cell coolant based on glycol/water mixtures 
and an additive package (with corrosion inhibitors and nanoparticles) that 
will exhibit less than 2.0 μS/cm of electrical conductivity for more than 3000 
hours in an actual PEM Fuel Cell System. Demonstrate the potential for 
commercializing such a coolant at a price that is acceptable for a majority 
of fuel cell applications (i.e., < $8.0/gallon).

Overall

2006

2007

Optimize nanoparticle chemistry (size, surface charge, stability)
Optimize corrosion inhibitors (type, concentration, combination)
Long-term tests (1000 hours tests)

Optimize nanoparticle chemistry (dispersion and thermal stability)
Long-term tests (3000 hours)
Tests in Real Fuel Cells (3000 hours)
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Key Technical and Economic 
Questions to be Answered

• How is the electrical conductivity of the coolant 
related to the properties of the additives?

• Will the additives influence the heat transfer and 
pressure drop characteristics of the coolant?

• Is the coolant and its additives compatible with 
the fuel cell cooling system components?

• What is the raw material and production cost for 
the proposed ‘Complex Coolant Fluid’?
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Approach
• The proposed Complex Coolant Fluid consists of 

a base compound (glycol/water mixtures) and an 
additive package.

• The base compound mixture has a freezing point 
less than –40oC, is non-flammable, and can be 
used at temperatures up to 122oC.

• The additive package consists of non-ionic 
corrosion inhibitors and ion-suppressing 
compounds (ion-exchange nanoparticles) to 
maintain the electrical conductivity of the coolant 
at a low level.
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Technical Approach in Phase I

• Development of the nanoparticles by 
emulsion polymerization
– Effect of preparation recipe on the electrical 

conductivity of the final coolant formulation
– Study dispersion behavior in the coolant

• Building a dynamic test loop (4 L)
– Short-term and long-term tests (electrical 

cond. vs. time and pH vs. time)
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Emulsion Polymerization
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Technical Approach in Phase II

• Optimization of the ion-exchange 
nanoparticles
– Effect of preparation recipe on the particle 

size, surface charge and dispersion behavior
– Study dispersion behavior in the final coolant 

formulation

• Short-term and long-term tests
– Electrical conductivity and pH vs. time
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Characterization of Nanoparticles
• Conversion

– Gravimetric Analysis

• Particle Size
– Dynamic Light Scattering (Nicomp)
– Capillary Hydrodynamic Fractionation
– TEM

• Cleaning
– Serum replacement
– Ion exchange resin (mixed bed)

• Surface Charge Density
– Conductometric titration
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Dynamic Test Loop for Coolant 
Testing
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Dynamic Test Loop for Coolant 
Testing
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Results from Phase II
Table 1: Particle size and surface charge for both anionic 

and cationic nanoparticles

Nanoparticles Average Size 
(nm)

Surface Charge 
by Titration 

(μeq/g)
ANPS 30403 454

CATPS 60211 743

CATPS 6 956

ANPS 6 28

350

80
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Results from Phase II

Particle deposition on channel walls due to electrostatic attraction
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Results from Phase II
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Results from Phase II

(a) pH and (b) electrical conductivity of an optimized coolant 
formulations as a function of time in the dynamic test system
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Discussion and Conclusions
• Uniform particle size distribution of the 

nanoparticles has been obtained by optimizing 
the recipe.

• High surface charge density (> 700 μeq./g) can be 
obtained with cationic particles. More 
optimization needed for anionic particles.

• Coolant formulations with non-ionic corrosion 
inhibitor and nanoparticles have lower rate of 
increase in electrical conductivity than DI water, 
glycol/water, and glycol/water/inhibitor mixtures.



17

Future Work
• In 2007, the nanoparticles will be optimized further to 

reduce coagulation

• Electrodeposition rate of additives on the electrode 
surfaces will be determined experimentally

• Material compatibility tests will be carried out

• Optimized coolant will be tested in real fuel cell systems 

• Cost of the coolant will be evaluated
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