Development of Solar-powered Thermochemical Production of Hydrogen from Water

Chris Perkins for the Solar Thermochemical Hydrogen (STCH) Team

16 May 2007

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- Start: 6-25-2003
- End: 12-31-2007
- Percent complete: 65%

Barriers
- AU. High-Temperature Thermochemical Technology
- AV. High-Temperature Robust Materials
- AW. Concentrated Solar Energy Capital Cost
- AX. Coupling Concentrated Solar Energy and Thermochemical cycles

Budget
- Total Project Funding
 - $11,118,362 DOE
 - $1,886,852 Cost share
- Funds received in FY06
 - $3,366,000

Partners
- The University of Nevada, Las Vegas
- The University of Colorado
- Sandia National Laboratories
- The National Renewable Energy Laboratory
- Argonne National Laboratory
- General Atomics
- ETH-Zurich
- TIAAX, LLC
Objectives

• Identify a cost competitive solar-powered water splitting process for hydrogen production
• Conduct experimental studies to complete quantitative selection
• Numerical and experimental evaluation of solar receiver concepts for integration with thermochemical processes
• Implement consistent methodology for comparing economic viability of cycles
Approach

• Design and implement a thermodynamic and experimental comparative assessment methodology to screen all known thermochemical cycles and select the top several performers
• Carry out critical experimentation to determine the real viability of down-selected cycles
• Develop validated designs for solar collector system components for integrated system analysis
• Analyze cost and efficiency metrics for integrated cycle performance
• Develop demonstration plant concept design(s) for surviving 1 to 3 competitive cycle(s) and demonstrate them at a semi-integrated bench scale, including on-sun testing
Technical accomplishments/progress/results

- Cycle database, scoring, and initial down-select completed
- Experimental work on 5 cycles targeting cycle closure/viability studies
- CFD modeling for developing understanding of thermal transport in two solar receiver concepts
- Experimental prototypes designed and under construction for aerosol reactor, solid particle receiver, and CR5 ferrite reactor
- Initial cost analysis performed for two leading cycles
Cycle selection and investigation

- 351 unique cycles have been discovered and scored
- 12 cycles found to be worthy of further experimental study
- 5 of those 12 are currently under active study by SHGR

Volatile Metal Oxides

- **Zinc oxide**
 \[\text{ZnO} \xrightarrow{1600 \degree C-1900 \degree C} \text{Zn} + \frac{1}{2} \text{O}_2 \]
 \[\text{Zn} + \text{H}_2\text{O} \xrightarrow{300 \degree C-400 \degree C} \text{ZnO} + \text{H}_2 \]

- **Cadmium Carbonate**
 \[\text{CdO} \xrightarrow{1450 \degree C} \text{Cd} + \frac{1}{2} \text{O}_2 \]
 \[\text{Cd} + \text{CO}_2 + \text{H}_2\text{O} \xrightarrow{120 \degree C} \text{CdCO}_3 + \text{H}_2 \]
 \[\text{CdCO}_3 \xrightarrow{350 \degree C} \text{CdO} + \text{CO}_2 \]

Non-volatile Metal Oxides

- **Sodium manganese**
 \[\text{Mn}_2\text{O}_3 \xrightarrow{1500 \degree C} 2\text{MnO} + \frac{1}{2} \text{O}_2 \]
 \[\text{MnO} + \text{NaOH} \xrightarrow{700 \degree C} \text{NaMnO}_2 + \frac{1}{2} \text{H}_2 \]
 \[2\text{NaMnO}_2 + \text{H}_2\text{O} \xrightarrow{350 \degree C} 2\text{NaOH} + \text{Mn}_2\text{O}_3 \]

- **Cobalt ferrite**
 \[\text{Co}_{0.67}\text{Fe}_{2.33}\text{O}_4 \xrightarrow{1400 \degree C} \text{Co}_{0.67}\text{Fe}_{2.33}\text{O}_{4-\delta} + \frac{\delta}{2} \text{O}_2 \]
 \[\text{Co}_{0.67}\text{Fe}_{2.33}\text{O}_{4-\delta} + \delta\text{H}_2\text{O} \xrightarrow{1000 \degree C} \text{Co}_{0.67}\text{Fe}_{2.33}\text{O}_4 + \delta\text{H}_2 \]

Other

- **Hybrid copper chloride**
 \[\text{Cu}_2\text{OCl}_2 \longrightarrow 2\text{CuCl}(l) + \frac{1}{2} \text{O}_2 \]
 \[2\text{Cu} + 2\text{HCl}(g) \longrightarrow \text{H}_2(g) + 2\text{CuCl}(l) \]
 \[4\text{CuCl} \longrightarrow 2\text{Cu} + 2\text{CuCl}_2 \]
 \[2\text{CuCl}_2 + \text{H}_2\text{O} \longrightarrow \text{Cu}_2\text{OCl}_2 + 2\text{HCl} \]
Aerosol Dissociation of ZnO

- Forward conversions > 55% in less than 1s residence time
- Net conversions ~40% - highest ever achieved
- Aerosol rates 3-4 orders of magnitude greater than stationary configurations
- Rapid quench mitigates recombination

\[\text{ZnO} \rightarrow \text{Zn} + \frac{1}{2} \text{O}_2 \]

- Extremely small product particles (>50 nm) give fast rates in H\(_2\) generation step
- Aerosol processing can give fast rates for many high temperature cycles

- 9 cm ID x 117 cm Al\(_2\)O\(_3\) tube
Production of hydrogen from Zn/H$_2$O

- Successful generation of hydrogen
- Reaction is mass transfer limited – small particles are better
- Aerosol rates much faster than stationary configurations

Aerosol vs. TGA kinetics

Nano-size Zinc Conversion (<1 sec)

Aerosol Kinetics >> TGA Kinetics

On-sun cycle testing in progress at High Flux Solar Furnace (NREL)
Hydrogen production from Cd/H₂O

\[Cd + CO_2 + H_2O \rightarrow CdCO_3 + H_2 \]

- \(H_2 \) production a strong function of available Cd surface

CdCO₃ crystals

- Cd(OH)₂ forms passivating layer on Cd
- CdCO₃ present as porous crystals
- Attrition can open more Cd surface to reaction, speed \(H_2 \) generation rates
- Rates have been increased to 5% total conversion/hr

Ball milling

Conversion: 4%/hr

Grinding

TiC coated

5%/hr
Kinetic model for CdO decomposition

\[\text{CdO} \rightarrow \text{Cd} + \frac{1}{2} \text{O}_2 \]

• Presence of oxygen strongly affects CdO decomposition temperature
• Kinetics confirm thermodynamic predictions
• Reaction should be operated in inert to mitigate recombination, speed rates
• Work continues on investigation of recombination reaction

Kinetic analysis in TGA

\[\frac{dX}{dt} = k_0 e^{-\frac{E_a}{RT}} (1 - X)^n \]

In argon: \(E_a = 269.4 \text{ kJ/mol} \), \(k_0 = 1.36 \times 10^9 \text{ s}^{-1} \)
In air: \(E_a = 470.9 \text{ kJ/mol} \), \(k_0 = 2.57 \times 10^{15} \text{ s}^{-1} \)
In oxygen: \(E_a = 438.9 \text{ kJ/mol} \), \(k_0 = 6.39 \times 10^{13} \text{ s}^{-1} \)
Solar Ferrite Cycle Closure Demonstrated

On-sun reduction at 1550 °C, H₂ production at 1100 °C
YSZ-stabilized ferrite shows stability, repeatability
First cycle closed “on-sun”
CR5 ferrite reactor constructed and ready for on-sun testing

- The prototype CR5 device will operate at a solar input of 9kW
- A set of 14 counter-rotating disks contain about 1.5 kg of ferrite material
- Hydrogen production goal of > 100 slph H2 in August of 2007
Successful reaction of CuCl₂

\[2CuCl₂ + H₂O \rightarrow Cu₂OCl₂ + 2HCl \]

- Thermodynamics predict 98% yield of desired Cu₂OCl₂ at 375°C and no significant CuCl formation with steam to copper molar ratio of 17
- Experiments show up to 85% Cu₂OCl₂ production
- Significant amounts of CuCl produced – needs to be mitigated
New design for electrochemical cell

• Electrochemical reaction:
 \[\text{CuCl} \longrightarrow \text{Cu} + \text{CuCl}_2 \]

• Original design:
 – Electrochemical flow cell using graphite resistant graphite plates
 – Corrosive CuCl\(_2\) caused Cu deposition and membrane destruction

• New design:
 – Plastic frame with graphite channels
 – Work focused on improving cation exchange, reducing shunt current

6 months ago

Today
Solid particle advanced solar receiver for thermochemical processes

- Can achieve temperatures in excess of 950 °C
- Falling particles directly heated by solar radiation
- Two-storage tanks and heat exchanger couple to thermochemical process

Cold flow testing completed

Increasing the mass flow rate increases the overall curtain opacity and receiver efficiency

Particle velocity affects receiver residence time and particle temperature
Numerical modeling performed to optimize particle receiver performance

- Small particles give high temperatures, but unstable curtain
- Polydisperse particles give stable, high temperature curtain
- Highest temperatures for incidence angle of 30°
Solid Particle Receiver Design and Construction

- The design and load analysis for the 1MWth Solid Particle Receiver (SPR) has been completed.
- Construction activities have begun.
- Testing on-sun at the National Solar Thermal Test Facility (NSTTF) is set for Oct. 2007.

SPR will be tested on top of the power tower.

National Solar Thermal Test Facility (NSTTF) at Sandia National Labs

Solid particle receiver prototype test platform
Advanced solar chemical receiver/reactor design

- Design for operation of volatile and non-volatile metal oxide cycles
- Can efficiently transfer solar energy to thermochemical process

Multi-tube design gives high (>36%) receiver efficiency

- 5-tube reactor under construction
- Testing at NREL August 2007
Economic evaluation of thermochemical processes

- Use H2A framework to develop consistent evaluation technique
- 2 processes examined: Zn/ZnO and Hybrid Sulfur
- Central production, 100,000 kg H₂ /day

Zn/ZnO: H₂ costs between $3.10 and $4.85/kg

HyS: H₂ costs between $2.50 and $3.15/kg
Heliostat Cost Reduction Study

- Heliostats contribute ~50% to the cost of solar H₂ plant
- Two workshops were held to brainstorm ideas for heliostat cost reduction
 - 30 international experts in heliostats and manufacturing
 - ~40% cost reduction possible through significant R&D
- Advanced heliostat design and manufacturing development can enable <$3/kg solar H₂ production
- SAND report will soon be published
Future Work

• Complete closure of 5 experimental cycles to determine technical feasibility and down-select
• Demonstrate “on-sun” CR5 ferrite reactor, solid particle receiver, and cavity aerosol receiver
• Demonstrate integrated cycle operations “on-sun”
• Continue materials research for implementation in solar receiver and other system components
• Down-select cycles through H2A evaluation of economic performance
Summary

• **Objective:** Evaluate solar thermochemical water-splitting routes to hydrogen production

• **Approach:** Screen cycles based on technical criteria, experimentally investigate most promising cycles, develop schemes for solar integration, evaluate economic viability of cycles

• **Technical accomplishments/progress:** Completed scoring process, demonstration of all reactions in 5 selected cycles, determination of kinetic/limiting factors in each cycle, design and modeling of three advanced reactor concepts, development of economic methodology for evaluating cycles

• **Future work:** Integrated closure of down-selected cycles, “on-sun” operation of advanced reactor concepts, exploration of materials challenges for solar implementation