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Overview

Timeline

Project start date: October 2004 o

Project end date:
November 2006

Percent complete: 100%

Budget
Total project funding

—DOE share: $1,252,683
—Contractor share: $616,993
Funding received in FY05: $575,198
Funding for FY06: $677,485
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Barriers

Barriers addressed

— K. Electricity Costs
— G. Capital Costs
— H. System Efficiency
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Objectives

* Demonstrate a single modular stack that can be
operated under dual modes

—Fuel cell mode to generate electricity from a
variety of fuels

—Electrolysis mode to produce hydrogen from
steam

* Provide materials set, electrode microstructure,
and technology gap assessment for future work
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Approaches

Assessment of
SOFC Material
Properties Relevant

Electrode
Configuration
Microstruture

Thin Electrolyte
Electrode Supported

Half Sealed

Cells Made b Planar Design
APPROACHES to Reversible Composition v 9
c : Technology
. . . alendering N
Operation Catalytic Activity Analysis
) 4 V} V} }
A
BASELINE FUEL FLEXIBLE FEVERSELE
PROGRAM MATERIALS REVERSIBLE REVERSAPLE
SELECTION ELECTRODES SINGLE CELLS STACKS
ELEMENTS
Conventional Reversible
. Electrode Supported Planar Design
SOFC Multifuel Anode . ]
CONCEPTS Cells Operating Metallic
Based and
At <800 °C Interconnect
Materials Reversible Electrodes

Technical focuses:
— Reversible electrode modeling

— Electrode compositions and
microstructure engineering
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Key challenges:
— Performance for cost and efficiency
— Low degradation for reliability



Cell Configuration

~60 um +— Oxygen Electrode, Perovskite
Y ST < Electrolyte, YSZ

. «— Hydrogen Electrode, Ni/YSZ
~300 pum

*SOFCs have the flexibility, running under power generation mode and hydrogen production mode
*High temperature solid oxide steam electrolysis can lower the electricity consumption
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Stack Configuration

Cell Module Multi-cell Stack

L Cell/ICs
—+J Repeat
units

: Oxygen electrode Interconnect (IC)

Cell

Interconnect (IC)
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Oxygen Electrode Performance

800C 200 sccm H, ~50% HO
175 « Screened several lanthanum
= LSM-1 c .
S \ \ {50 —lsm2 || strontium manganites (LSM),
T \ \ —Lsr2 lanthanum strontium ferrites
= \ o on || (LSF), and lanthanum
= f. strontium cobalt iron oxides
2 Electrolyze%.75 .\X (LSCF) as oxygen electrodes
0:50 [
Steam Utilization Fuel Cell * Under both modes, electrode
o o performance increases in the
— Fuel Utilization
' —0:00 ' / order of LSCF>LSF>LSM/YSZ
3 2 - 0 1 2 3
J (Alem’)
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Oxygen Electrode Performance Stability

# Hydrogen electrode

ey Electrolyte
:igﬁf ovgen * Excess performance
aoc degradation_ was
1400 S e SOEC observed with LSM/YSZ
200 | \ as the oxygen electrode
Y / in electrolysis mode
€ 100 . (SOEC) mainly due to
£ 800 electrode delamination
ié, 600
> — LSM SOFC
< 400 | s LSFSOEC o LSCF and LSF showed
200 - LSF SOFC better performance
. | | | | LscFsorc  stability in electrolysis
0 20 40 60 80 100 mode than LSM/YSZ
Time (hrs) electrode
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Oxygen Electrode Analysis

2B-On-1
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Cr transport and accumulation in LSCF electrode

Sr migration and depletion?
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Performance Stability Improvement

Bare Stainless Steel Interconnect with LSCF Electrode

800C 50% H,/ 50% H,O

6G10
0.350
230 Fuel cell held at 1.5A)
~ 0.250 e
Eo_zoo ’ |H l"'-"' :J"
£ , 44111 Fuel cell held at OCV
5 0150 T + ‘
1 A
0.100 i =2 H {A { = + { {. ~
QiR Otmicimpedance
0.000

100 200 300 400 500 600

cm?

Coated Interconnect with LSCF Electrode

ASR (ohm-cm?)
o Q (=} o
—h 8] w
g 8 8 8 g

28 B
3 8

é

800C 50% H./ 50% H,O
6G14

**“Electrolysis held at 1.5A/cm?

Ohmicimpedance

T T T T
0 100 200 300 400 500

Time (hrs)

imac

* No significant difference in
degradation rate between
cells held under a constant
load in fuel cell mode
compared with cells that
were held at OCV

« The dominant degradation
mechanisms were likely to
be thermally activated

« Coated interconnect
significantly improved the
performance stability
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Oxygen Electrode Reversibility

Non-symmetrical vacancy model
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« Vacancy diffusion and activation
at the oxygen
electrode/electrolyte interface are
different for fuel cell mode and
electrolysis mode

« Higher current densities can lead

to depletion of vacancies at the
interface in electrolysis mode

 Experimental data matched well

with non-symmetrical vacancy
model
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Hydrogen Electrode Performance

% Niwvolume (by solids)
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* Higher polarization losses
predicted under
electrolysis mode mainly
due to difference of
diffusion

* Thinner electrode and
smaller particles preferred

Conditions:

T=800C

Fuel = 50/50 H,/H,O

Active layer thickness= 16 um
Active layer particle size=0.8 uym

Region | — H,/H,0 diffusion and reaction limited
Region Il — Reaction limited
Region Il — lon conduction and reaction limited
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CH, consumption rate {molim’-s)

Hydrogen Electrode Internal Reforming

l Thermodynamic Prediction of Carbon Deposition Boundary

At 800°C, internal
reforming kinetic was fast

S/C houndary

« CH, conversion measured
(gas chromatography) >
98%, agrees well with

o ] F @ thermodynamic prediction
m -Ngug

BN « Thermodynamic

\Q 5. calculations defined
D:- CH, consumption rate ) of Carbon depOSition
0 03 0z L BE o5 o = o1 XIL 55 75 bOU ndal'y

X is the distance from the fuel inlet along the

channel and L is the total channel length
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Performance with Internal Reforming

0.9 * Performance (I-V curve)
08 with internal reforming
0.7 similar to that with 64%
< 06 H./36%N, fuel
§0.5
>
g8 04 8 64% H2 - 36% N2  Improved cells
03 —#20% CH4 - 30% H20 - 50% N2 efficiency and potential
0.2 system simplification
0.1 with internal reforming
01 00 200 300 400 500
Current Density (mA/cm2)
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ASR (ohm-cm2)

Module Performance Improvement
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[ Technology Feasibility
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0.5 1
Electrolysis ASR (oh m-cmz)

1.5

Reduced Cost, Increased Efficiency

600

* LSCF performed

better than
LSM/YSZ electrode

Substantial
degradation rate
reduction achieved
with LSCF oxygen
electrode in
electrolysis mode

Improved
performance with
electrode material
selection and
process
engineering
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Average Cell Voltage (V)

06 |

0.5

Multi-cell Stack Performance

08 |

0.7 |

Fuel: 64%H,/36%N, 80% Fuel Utilization
800C

#1089 (10-Cell Stack)
—8— U059 (3-Cell Stack)
—8— 047 (3-Cell Stack)

3rd stack
1st stack 2nd stack
0 200 400 600 800

Current Density (mA/cmZ)
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1000

« Built and tested several
multi-cell stacks under
power generation and
electrolysis mode for
more than 1000 hrs

* Performance improved
with process control
and contact resistance
reduction
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Stack Performance Demonstration

14 7.0
10-cell stack, 800C
1| 70%H,0/30%H, feed 6.0
10 <::] 5.0 5
i, ) 02 * 10-cell stack generated
>6 SLPM H, with ~1.1
g 4 “——_, 54% steam utilization [, E kW electrical input
) o :> 10
0 ‘ ‘ ‘ ‘ ‘ ‘ 00 « Excellent area specific
0 0.1 0.2 0.3 04 0.5 0.6 0.7 - S
Current Density, Alcm? H2 prOdUCtlon Capablllty
’ Electrolysis Internal Refoming Electrolysis Internal Reforming (>4 " 5cc,m i nlc m2 at cel I
10 507 mA/cm2 . 400 mA/cm2 507 mA/lcm2 253 mA/cm2 « 350 mAIimZ voltag e I ess th a n 1 ) 3V)
 >1000 hour dual mode
operation

Elapsed Time on Degradation (hour)
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Cost of Hydrogen Estimate

Central CoH with Various System Configurations

$4.000

$3.500

Oo&m
M Capital

$3.000 -

o
5 $2.000

t of Hydrogen, $/kg

3
$1.500

[of

$1.000 -

$0.500 -

$0.000

@ Feedstocks

N I i i i

CoE ($/kWh): 0.02 to

0.08

Stack Power Density
0.25 to 0.75 W/cm2

Cost of Steam: $0.00/L

to $0.02/L

Internal Rate of Return:

10% +/- 5%

Steam Utilization: 50%

to 90%

O&M Percentage: 5% to

9%
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Dist System, no GT

Cent Station, no GT

Cent Station, GT

Cent Station, no FC Cent Station, Heat and

Central SOEC CoH Sensitivity

Steam Integration

0.02

0.00

5%

5

90% Hl 50%

Il 002
M 5%

% I 9%

0.25

008

$1.00

$2.00

$3.00

$/kg H2

$4.00

$3.7/kgH, for distributed
size (1500 kg H, /day)

$2.7/kgH, for central
station size (150,000
kgH,/day) due to capital
and O&M cost reduction

Integration of heat and
steam production within
an industrial plant can
reduce CoH

CoH is most sensitive to
the cost of electricity (CoE)
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Cost of Hydrogen, $/kg

Electrolysis CoH Comparison

CoH with Various Electrolysis Systems ~ AI kal i n e
—Low stack cost

O Feedstocks

—High feedstock cost

- - PEM
—Large stack cost

— Effect of high
pressure not
considered

« SOEC
Distributed Alkaline  Distributed PEM Distributed SOEC Central Alkaline Central PEM Central SOEC - LoweSt feedStOCK COSt

—Low CoH due to
reduced feedstock
cost
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SOEC Technology Assessment

Thermodynamic efficiency Electrical demand and specific H, generation capability
Current Density, Alem?
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Advantages: Challenges:

— High thermodynamic efficiency — Stack materials for performance and stability

— Fast electrode kinetics at high — Reliable seals for efficient hydrogen collection
temperature — Electrolyzer design and components fabrication for cost

— Low electrical energy demand reduction

— System design for heat integration
— Enabling technologies such as high temperature recycle

imagination at work blower and high temperature heat exchanger

Hydrogen Program Review, 05/15/2007, PDP15



Preliminary RSOFC Technology
Roadmap

Technology Demo

Feasibility .Small System System Optimization POC Demo
-Efficiency Elesr:g'lr'] HEX *Pressurized
*Dual Mode -H!gh TR SI B| , «Efficiency
9n T REeyele Blowe 'Relialbility

Cost Reduction
Pressurization? <Manufacturing Process
«Stack *Low-cost Materials
*Durability *BOP Components

Scale up
Reliability Large Cells
*Robust Seals *Stack Design
*Degradation

Component Perf.
*Seals
*Interconnects
Cells
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Summary

» Electrode development

— Performance: LSCF>LSF>LSM

— “Irreversibility” of oxygen electrode observed, associated with differences in vacancy diffusion and
activation at electrode/electrolyte interface

— Internal reforming with Ni-YSZ modeled and demonstrated

 Module and stack development

— Module and stack performance improved by electrode engineering
— Performance stability improved with coated interconnects
— Demonstration stack operated over 1000 hours under dual mode

— High power density of 480 mW/cm? at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM
hydrogen production in steam electrolysis mode using about 1.1 kW electrical power demonstrated

* Technology assessment and cost estimate

— Flexibility for dual mode operation
— Potentials for low cost and high efficient hydrogen production through steam electrolysis

— Cost of hydrogen production at large scale estimated at ~$2.7/kg H,, comparing favorably with
other electrolysis technologies

— Key challenges identified and preliminary technology roadmap generated
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