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Overview
Timeline

Start – May 2005
End – Oct 2008
≈10% Complete

Budget
Total Project Funding

DOE share - $2.9M
Contractor share - $737k

Funding Received in FY06
$0k

Funding for FY07
$700k (projected)

Barriers
Hydrogen, Fuel Cells and Infrastructure 
Technologies Program Multi-Year 
Research, Development and 
Demonstration Plan

V. Feedstock Cost and Availability
W. Capital costs and efficiency of technology

Partners
University of North Dakota Environment 
Energy Research Center
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Approach: Biomass Slurry to Hydrogen Concept

Fuel flexible, using raw, ground biomass such as wood or switch grass  
Carbon neutral means to produce Hydrogen
H2 separation: Leverage experience with Advanced Pd membranes

Slurry  of ≈10 %
Ground Biomass
(Wood) in 
Dilute Acid

44% cellulose
19% hemicellulose
13% “other”
23% lignin
<1%   “ash”
<1% protein

0.11 kg H2/kg Biomass (dry)

Biomass Gasification to Hydrogen Concept

Fuel flexible, using raw, ground biomass such as wood or switch grass  
Gasification & PSA: Leverage existing technologies
Process complexity 

Gasification Reforming Shift PSA

H2

Char combustor &
cyclones

Sand Char & sand 

Steam

Air
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Objectives
(2Q2007) Illustrate, through an initial feasibility analysis on a 2000 ton/day (dry) 
biomass plant design, that there is a viable technico-economical path towards the 
DOE's 2012 efficiency target (43% LHV) and assess the requirements for 
meeting the DOE's cost target ($1.60/kg H2).

(3Q2007) Demonstrate, through preliminary results, that an acid tolerant, model 
sugar or sugar alcohol solution reforming catalyst has been synthesized.

Future Work (pending funding)
Hydrolysis Work

Optimum hydrolysis conditions: Energy and Capital Cost
Hydrolysis product chemical composition and physical properties
Sugar identification and concentrations
Identification and quantification of low molecular weight organics
Solubility, average MW and surfactant/foaming properties of lignin fraction

Catalysis discovery and testing

Micro-scale continuous operation of membrane reformer with batch 
hydrolysis

~500 hr catalyst performance test
Collection of material and heat balance data important for plant design

Final Economic and Energy Analysis for Final Report
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Biomass Hydrolysis and Reforming Processes
Modeling Basis 

Dilute acid hydrolysis
(C6H10O5 )n + nH2O  nC6H12O6

Liquid phase reforming
C6H12O6 + 6H2O 12H2 + 6CO2

C6H12O6 3CO2 + 3CH4

H2 separation
Pd membrane is used for H2 separation

Lignin combustion
C7.4H14O1.4 + 10.2O2 7.4CO2 + 7H2O

Sulfur recovery 
SO2 + 0.5O2 SO3

SO3 + H2O H2SO4

H3O+

feedbiomassofLHV
consumedEnergyrecoveredEnergyHproductofLHVEfficiencyEnergy  LHV 2 −+

=
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Modeling and Simulation Assumptions

An adiabatic efficiency: 75% for all rotating equipment.

Heat losses:  4–5% of the heat load on heat exchangers.

Energy consumption for biomass pretreatment: 1.8% of the biomass feed LHV.

Pd alloy membrane selectivity of H2: 100% 

The biomass feedstock: 75% cellulose, hemicellulose or other oligimers, that could be 
converted to soluble, reformable oxygenates by the hydrolysis process. The balance, 25%, 
is lignin, C7.4H14O1.4. 

Two-stage dilute acid hydrolysis processes operated at temperatures between 190 °C and 
215 °C. 

For modeling purposes only, all reformable oxygenates are “glucose”.

For modeling purposes 95% “glucose” yield was considered to be only a function of 
temperature. 

In the baseline design, the yield of H2 and CO2 from glucose: 94% over the advanced high 
activity, high selectivity catalyst system.
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Block Flowsheet Diagram for Proposed Biomass Reforming Plant 

Circles:
Key Efficiency Drivers
TEE310: water recycle splitter
Reform300: Reformer
Hyd201:  Hydrolyzer one
Hyd202:  Hydrolyzer two
Burner500:  Burner
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Key Features of Proposed Biomass Reforming Plant 

consumedEnergyfeedbiomassofLHV
RecoveredEnergyHproductofLHVEfficiencyEnergyProcess 2

+
+

=

ConsumedEnergyFeedBiomassofLHV
HProductofLHVEfficiencyHPlant 2

2 +
=

•Sulfur tolerant Pt-alloy rafts/nano-engineered mixed metal oxide catalysts 
will be developed for liquid phase oxygenates (sugar) reforming

•Lignin, byproduct fuel gas and unrecovered H2 are burned to provide 
thermal energy thus increasing system efficiency. 

•Recycling of the hot water used for hydrolysis increases system intensity. 

•Sulfur recovery & recycle as H2SO4  lowers costs and minimizes emissions 

•54.2% LHV energy efficiency (46.6% plant H2 efficiency) achieved through 
comprehensive thermal integration 

feedbiomassofLHV
consumedEnergyrecoveredEnergyHproductofLHVEfficiencyEnergy  LHV 2 −+

=

DOE H2A definitions

UTRC definition



9

Biomass Reforming Plant HYSYS Flowsheet Used for Initial 
Optimization Through Parameter Sensitivity Studies

• 2000 ton(dry)/day biomass feed
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Parameter Sensitivity Studies, One Parameter Varied & Others 
Held Fixed: Out of 40,  2  Were Very Important  & 7 Important
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•Two of the most important:
• TEE 310 process water splitter recycle affects strongly the efficiency: 

−Most of energy goes into heating water, 
−At given water input, increased recycling dilutes the system, requiring more 
energy

• Increasing combustion of unconverted biomass increases plant energy recovery
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• Increase of reformer pressure is limited by Capital Cost & Chemistry

• SO2 oxidation temperature has negative impact on the efficiency

Parameter Sensitivity Studies 2 : Efficiency Increases 
with Reformer Pressure & Lower SO2 Oxidation Temp.
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Major Drivers for LHV Energy Efficiency

Parameter Impact on Efficiency
Hydrolysis Stage One Temperature + +
Hydrolysis Stage Two Temperature + +

Reformer Pressure + +
Reformer Glucose Conv. To H2 + +

Reformer Glucose Conv. To CH4 + +
SO2 Oxid Vessel Temperature - -

Burner  Temperature +
Burner Lignin Combustion + + +

Tee310 Flow Ratio (H2O recycle) + +  +

+     slightly positive impact
++   positive impact
+++ very positive impact
- Negative impact

Several parameters have been 
identified  to have strong impact on
system efficiency. For example, 
Lignin combustion in the burner 
provides thermal energy to 
the system. 

Tee310 splitter recycles hot 
process water. System efficiency 
increases with decreased hot water 
recycle. 
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Design of Experiments

• Statistical Design of Experiments. 
• 9 factors 
• 61 experiments 
• 5 replicates used to measure/check computational/round off 

errors
• Modified central composite design for response surface study

• 61 cases were generated and run by using HYSYS.

• Effects of multi parameters on the system efficiency were
obtained. 

• 2-D and 3-D response surface maps were created from the Design 
of Experiments results.

• Operating region for achieving greater than 50% efficiency
was identified from 2-D and 3-D maps. 
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Reformer conversion drives system efficiency

Conversion of sugars to methane has a positive effect on 
efficiency
Methane combustion provides plant energy
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Higher pressure & optimal H2O recycle boosts efficiency

•LHV energy efficiency > 52% at reformer pressures >147 bar 
•At given water input, increased recycling dilutes the system, requiring more 
energy
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Lignin combustion, system pressure, & hydrolysis conditions 
have a strong effect on efficiency

• >50% LHV efficiency can be achieved when the lignin combustion/heat 
recovery exceeds 85% and the temperature of hydrolyzer 1 is greater than 
170 °C   
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Preliminary economics on baseline plant design

DCF CALCULATION OUTPUTS:

Required Hydrogen Selling Price (Year 2005 
Real Dollars/kg) $1.581

Required Hydrogen Selling Price (Start-up 
Year (Nominal) Dollars/kg) $1.581
After Tax Real IRR 10.0%
Pre Tax Real IRR 14.0%
After Tax Nominal IRR 12.1%
Pre Tax Nominal IRR 16.2%

After Tax Real Capital Recovery Factor 0.102

After Tax Nominal Capital Recovery Factor 0.122

Total Real Fixed Charge Rate 0.139

Total Nominal Fixed Charge Rate 0.170
NPV $0
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Major H2 Selling Price Drivers Are Capital, Other Raw 
Material, and Feedstock Costs 

Catalysts are included in additional raw material cost 

Category Cost Contributions
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Preliminary economics on baseline plant design(3)

Sensitivity Analysis of Biomass Gasification to Hydrogen

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85

Total Capital Investment (base
case = $280.55 million)

Capacity Factor (base case =
90%)

Labor Requirements (base case
= 54 FTE)

LHV Energy Efficiency (base
case = 54.4%)

Biomass Feedstock Cost (base
case = $21.86/ton)

$/kg of Hydrogen
Base Case = 

$1.58/kg
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Summary

• Biomass reforming plant design with a system HYSYS simulation LHV 
efficiency of 54% is proposed.

• The thermally integrated design yields high efficiency and minimizes sulfur 
emissions. 

• Major drivers on the efficiency were identified in parameter
sensitivity studies.

• > 50% LHV efficiency operating regime identified through DOE studies.

• Hydrolysis and reforming catalyst/reactor performance targets identified. 

• Hydrogen production cost of $1.60/kg H2 is achievable with this process.
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Future Work

(2Q2007) Illustrate, through an initial feasibility analysis on a 2000 ton/day 
(dry) biomass plant design, that there is a viable technico-economical path 
towards the DOE's 2012 efficiency target (43% LHV) and assess the 
requirements for meeting the DOE's cost target ($1.60/kg H2).

(3Q2007) Demonstrate, through preliminary results, that an acid tolerant, 
model sugar or sugar alcohol solution reforming catalyst has been 
synthesized.

Pending future funding, hydrolysis optimization; additional catalyst 
development, including atomistic modeling; and a 1-kW scale demonstration 
and final techno-economic analysis at the end of the project.
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High active surface area 
Nanocrystalline structure

~100% NM dispersion

Conceptual Catalyst Design Quantum Mechanical Atomistic 
Modeling for advanced catalyst design

Catalyst Synthesis

⇔ ⇔ ⇔

UTRC Catalyst Discovery Approach
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Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis
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Laboratory Capabilities for Catalyst Development

Autoclave for 
Hydrolysis / 
Reforming

Biomass Test Rig – reforming of 
cellulose and hemicellulose 

materials to form H2 and CO2
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