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LIQUEFIER DEVELOPMENT PROGRAM

US DOE R&D Grant - Hydrogen Production
and Delivery

Program Topic - Hydrogen Delivery
Subtopic — Hydrogen Liquefaction

Budget Timeline
$2.518 M for Pilot Plant Design,
Fabrication, and Testing * Project restart date — Jan ‘07
 Cost Share * Project end date — Dec ‘09
— $2.0 M from DOE * Percent complete — 8%

— $0.518 M from Contractor
« $161K Received in FY06
« $500K Planned for FYQ7



GAS EQUIPMENT ENGINEERING

CORPORATION
Founded in 1921 as a GEECO Produces 02 and
manufacturer of industrial N2 Generators for US Navy

gas production equipment *CV 14 in 1962, through
*CVN 78 in 2007
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USS Nimitz and USS
Independence

The O2/N2 Producer that GEECO
supplied for the USS Nimitz (CVN68)
in 1968 is still operating reliably today

Early GEECO CO, Plant



Project Partners

Team Member Responsibility

Gas Equipment Engineering Contract Administration

Corp. Detailed Design
Liquefier Fabrication
System Testing

Avalence Project Coordination
System Integration
R&D Dynamics Turbo-Expander Design and
Bloomfield, CT Fabrication
MIT Cycle Evaluation & Modeling

Cambridge, MA He Liquefier Experience



Proposed Project Approach

‘»Evaluate Alternative Cycle Approaches

» Target High Efficiency/ Low Cost

» Enable Unique Cycle Cost/Performance Trade-Offs
“*Scaleable to >50,000 kg/day Systems

»Present Capital Versus Operating Cost Trade-Off at
200, 2000, 20,000, 200,000 kg/day

‘s Target Cycle Performance Projections To
Exceeding DOE Efficiency Target of 3.6 kWh/kg

*»*Build Small Scale Pilot Plant of ~ 200 kg/day



Overall Project Schedule

PROJECT TIME LINE

Cycle Design

Detailed System Design

Q107

Design and Build T/E

Procure Major Components

Q2 07

Q3 07

Q4 07

Q108

Q2 08

Q308

Q4 08

Q109

Q209

Q309

Build Pilot Plant

Test Plant




Initial Phase Schedule

PHASE | TIME LINE

Jan Feb Mar April May June July Aug Sept

Cycle Options Defined

Peliminary Cycle Definitions

Cycle Performance Modelling

Cycle Economic Comparison

Specify Turbo Expander Requirements

Cycle Selection

Quarterly Progress Report

Design Review




First Year Project Challenges

» Challenge Historical Technology “Wisdom”
»Find H2 Para/Ortho Equations of State
»Develop Simple and Scalable Economic
Assessments of Potential Cycles
»"“Optimize” the Design of Potential Cycles
» Restructure Project Due to Long Delays in
Funding

“*Required Change in Technical Partner
»Produce Pilot Plant Design With Optimized

Scale
»*System Size Versus Available Components



Present State of the Art
H, liquefaction - Claude cycle
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Technology Background

»Present “State of the Art” Operates at ~30 to
35% of Carnot Efficiency (Linde)

»Work by Quack (2002) Claims a Practical
Limit of About 60%

“*To Achieve This a Very Elaborate and
Expensive Set of Components was Required

»MIT He Liquefier Experience Using Hydraulic
Motors Will Be Examined for H, Systems

»More Experience with He Cryogenic
Expanders Exists

»Consider Acoustic Sterling Based on Recent
Advances



i

Ideal Work Of Liquefaction

Wdeal — T W T VI/C

i cooling conversion ondensation
Wcooh-ng Reduce H, Gas Temperature
Wconvemon H, Conversion to Para State

VVcondensation Gas to Liquid Conversion



H, in para [%]
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Initial Task was to
Find Documented
Equation of State
(EOS) Information
Useful for Ortho or
Non-Equilibrium
Ortho/Para H,

REFPROP 8.0 from NIST (Currently in Beta Testing)
New EOS (Leachman) for n-H, and p-H, Accurate at
Higher Pressure Range and in Critical Region



‘G Work Of Cooling And Conversion
vs. Final Temperature
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The Ortho-Para Conversion Load is a Significant
Portion of the Total Liquefaction Load
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Effect of Initial Pressure on ldeal
Work of Liquefaction
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The “Correct” Initial Pressure Can Be
Found to Optimize the Total Work Input



Potential Cycle Alternatives

»Explore “Once Through” Cycle Design
“*Minimize H, Compressor Size
»Vary H, Pressure to System Advantage

‘*Elevate System Pressure “Just Enough”

‘*Replace JT Valve with Hydraulic Motor

»Higher Efficiency Method to Reduce Pressure Back to
Ambient

»Evaluate Performing Cooling “Work™ In A
Variety of Ways
“* Turbo-Machinery Directly on H, Flow
s Turbo-Machinery in Separate Cooling
Loops Via HXC
“*Acoustic Sterling for Higher Temp Stages



T

T-S Diagram For Normal Hydrogen
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Pressures Above 20 bar Enable the
Use of Hydraulic Motors For 100%
Liquefaction Conversion



Possible Cycle

Single Pass, Low-Pressure H,
Liquefaction
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Simple Design, Single Pass,
High-Pressure H, Liquefaction
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Final Design, Single Pass,

High-Pressure H, Liquefaction
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cle Simulations Using Excel

Constraint Equations:
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» Lookup Table for o-p Concentration

» Offsets Calculated from Zero Pressure Properties (Haar
et. al.)

» Properties of n-H2 and p-H2 Called from REFPROP 8.0
Using Leachman EOS

H, Properties in Excel

=Enthalpy("parahyd","TP","SI",E9,F9)

» Offsets Applied to n-H2 Enthalpies and Entropies
» Properties Combined Using Mixture Equations

hydrogen properties |

State T [K] P [MPa] hlkd/kg] s [kJ/kg-K] X0 Xp hn hp sn sp

c - 300 40 4717.305 37.695946 0.74928 0.25072 4717.334 4687.396 37.69604 31.89437
d 77 40 1340.734 16.801672 0.492654 0.507346 1517.508 1002.323 18.53103 9.600858
e e 40 408.7108  -3.3529 0.001693 0.998307 930.9276 407.5291 5.633563 -3.419647




Cycle Simulation Parameters

»Cycle was Simulated with Combinations of
the Following:
“*Turbine Adiabatic Efficiency: 80%, 90%
“*Heat Exchanger Pinch Point AT/T: 5%, 3%
‘*Hydrogen Pressure: 15 bar, 20 bar, 25 bar
“*Helium Pressure Ratio: 5, 6, 7

»Cycle Efficiency Ranged from 36% to 52%



Sample of Cycle Simulation Results

Cycle Efficiency vs. Helium Pressure Ratio
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Main Features of Selected Approach

»Once-Through H, Liquefaction — 100% Yield
» Collins-Style cycle with He as Working Fluid
»Constant, Supercritical Pressure in H, Loop

»Components Use Established Technology and
Facilitate Scalability

»Efficiency Through Effective Staging

»POTENTIAL TO INCREASE EFFICIENCY BY
30% OVER PRESENT STATE-OF-THE-ART

» CONVENTIONAL COMPONENT USE AT
REDUCED FLOW RATE PROMISES LOWER
CAPITAL COST



Next Steps in Project Work

»Integrate HX Model into Cycle Simulation

*Determine Required Heat Exchanger UA and
Hydrogen “View Factors” in Three Channel HX

»Gather Compressor and Expander
Performance and Cost Data

»Simulate Several Additional Cycles

»Investigate Sensitivity of Various Parameters
on Cycle Efficiency

»Get Feedback from Turbo-Expander
Development Partner
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