2007 DOE Hydrogen Program
Annual Merit Review

Hydrogen Codes and Standards

Jim Ohi
Russ Hewett, Robert Burgess, Dennis Barley, Keith Gawlik,
Julia Thomas, Roland Pitts, Andreas Vlahinos

National Renewable Energy Laboratory
May 17, 2007

Project ID# SA1

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- Project start date: 10-1-06
- Project end date: 9-30-07
- Percent complete: 50
 (C&S work on-going since 1997 but defined and funded annually)

Budget
- Total project funding
 - DOE share: $2.9M
 - Contractor share: $0K
- Funding received in FY06: $1.1M
- Funding for FY07: $2.9M

Barriers
- Codes and Standards Barriers addressed
 - Consensus national agenda on codes and standards (J,A,B,D,L)
 - Limited DOE role in development of ISO standards and inadequate representation by government and industry at international forums (F,G,H,I,K)
 - Current large footprint requirement for hydrogen fueling stations (P,N,M)

Partners
- National H2/Fuel Cells Codes and Standards Coordinating Committee
- FreedomCAR-Fuel Partnership C&S Technical Team
- NHA, USFCC
Objectives

• Implement consensus national agenda on domestic and international codes and standards for hydrogen systems in commercial, residential, and transportation applications
• Facilitate permitting of retail H2 fueling stations in US through education and outreach to state/local code officials
• Establish requirements for hydrogen codes and standards based on scientific data, modeling, and analysis
• Enhance DOE’s role in development of ISO and other international standards and strengthen consistent and sustained representation by US government and industry at international standards forums
Approach: Program Structure

NREL Focus Highlighted

- C/S Tech Team
- C/S R&D Plan
- H2 C/S Coordinating Committee
- National Template C/S

- DOE Hydrogen Safety, Codes & Standards Program
- Standards
- Technical Requirements
- Testing Protocols & Validation
- Model Codes
- Regulations
- DOE Safety Guidelines
- P. I. SOPs
- 1st Responder Training
- ISO, IEC Standards
- GTR

- R&D Priorities
- R&D Projects
- Hydrogen Behavior
- Vehicle
- Fuel Infrastructure
- Interface
Approach

• Implement unified national agenda for codes and standards development
 – **Facilitate cost-effective, timely permitting of hydrogen fueling stations (HFS)**
 • priority for FreedomCar-Fuel Partnership and Hydrogen Technical Advisory Committee
 – Coordinate national/international codes and standards activities for DOE with NHA and USFCC
 • National H₂/Fuel Cells Codes and Standards Coordinating Committee
 – Work with prime contractor and DOE/GO to implement national templates and accelerate development of priority standards

• Establish requirements for hydrogen codes and standards based on scientific data, modeling, and analysis
 – Coordinate and conduct R&D through Codes and Standards Tech Team R&D Roadmap
 • integrated engineering approaches to hydrogen safety
 – **safe, energy-efficient building design**
 • Fuel-Vehicle Interface
 – hydrogen fuel quality specifications
 – **performance-based component testing and validation**
 – sensor testing and validation
Technical Progress: HFS Permitting Workshop
(CARB, Sacramento, Feb. 1, 2007)

- Invited fire/building code officials, HFS developers from states where HFS located or likely to be located
- Perspectives of HFS developers and code officials on permitting experience (case studies)
 - Shared lessons learned
 - Shell Benning Road HFS (Washington, DC, Office of Fire Marshall)
 - NextEnergy energy station (Michigan Dept. Environmental Quality)
 - Chevron AC Transit HFS (Oakland Fire Prevention Bureau)
- Key issues and barriers to timely and cost-effective permitting of HFS identified
- Recommendations to DOE on how it can facilitate permitting process for HFS
- Feedback on proposed DOE initiative
Technical Progress: HFS Permitting Workshop

• Key Recommendations to DOE
 - Develop Information Repository for HFS with validated, “3rd party” data and information
 - Identify applicable codes & standards (specific safety requirements) and make them more accessible to permitting officials
 - Develop detailed Process Flowchart for permitting HFS
 - Develop Template for code officials to navigate permitting process
 - Note best practices for application of codes and standards for HFS
 - Develop fact sheets on hydrogen technologies/HFS equipment for permitting officials
 - Develop permitting pathway from “behind the fence” stations to retail stations

• Proceedings/presentations posted on NHA website (www.hydrogenandfuelcellsafety.info)
Technical Progress: Permitting HFS

- Information Toolkit
 - Fact sheet(s)
 - basic information on HFS (examples, codes/standards typically used, information sources)
 - Network chart
 - contact list of code officials whose jurisdictions have issued permits for HFS
 - Flowchart of permitting requirements
 - web-based map to “navigate” requirements with database of key standards and codes
 - HFS Permitting Compendium
 - web-based “notebook” and database

- Education-outreach workshops for code officials
 - National workshops with NASFM, NCBCS
 - vet case studies, C&S permitting process, information tools
 - Workshops in key regions
 - locations where industry will focus H₂ infrastructure development and vehicle deployment
Technical Progress: Information Repository Concept

Permitting Process
- Application for Permit
 - Site Plan
 - Buildings
 - Equipment
 - Operation
- Construction
- Inspection
- Operation, Maintenance

Retail Hydrogen Station
- Addition to Existing Station
- Stand Alone Station
 - On-site Production
 - H2 Delivery
 - Elect.
 - SMR
 - ATR
 - LH2
 - CGH2
 - Storage
 - Underground (LH2)
 - At-grade
 - Canopy Top (CGH)
 - Compression
 - Dispensing

Process Flowchart
- Level of Detail

Codes and Standards
- IFC 2209
- NFPA 52
- Etc.
Technical Progress: HFS Factsheets

Station Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
<th>Permitting Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>California (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAX Airport Diesel, Los Angeles, CA</td>
<td>Demonstration project on airport property to service airport fuel-cell vehicles; on-site electrolyzer; open since October 2005</td>
<td>Dale Mayo, City of Los Angeles Fire Production Engineer, Phone: 213-486-6608, dale.mayo@lacity.org</td>
</tr>
<tr>
<td>California Fuel Cell Partnership, West Sacramento, CA</td>
<td>On-going bi-fuel facility serving variety of research vehicles; using delivered liquefied hydrogen; open since 2010</td>
<td>Rod Poulos, City of West Sacramento Fire Chief, Phone: (916) 517-6000, rpoulos@cityofwestsacramento.org</td>
</tr>
<tr>
<td>Shell Refining Road Station, Washington, DC</td>
<td>Ongoing public fueling facility on part of retail gasoline station; using delivered liquefied hydrogen; dispensed as liquid or compressed gas; open since November 2014</td>
<td>Robert Haring, District of Columbia Deputy Fire Chief, Phone: 202-727-0169, robert.haring@dcd.org</td>
</tr>
<tr>
<td>Chevron/Prop Energy Boggy Creek Road Hydrogen Station, Dinuba, FL</td>
<td>Five-year demonstration on new site with new building on utility property for hydrogen-fueled internal combustion engines - fuel in liquid form or as gaseous hydrogen; open since October 2016</td>
<td>Thomas Hite, Manager, City of Orlando Permitting Division, Phone: 407-846-3626, thomas.hite@myorlando.com</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WestEnergy Center Hydrogen Station, Detroit, MI</td>
<td>Ongoing facility at new site to service alternative fuel vehicles; using delivered hydrogen or natural gas from research projects; open since April 2016</td>
<td>Dan Hager, City of Detroit Supervisor of Fire Production Engineering, Phone: 313-204-311, daniel.hager@cityofdetroit.org</td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City of White Plains Hydrogen Refueling Facility, White Plains, NY</td>
<td>Ongoing facility on city property for city hydrogen-fueled internal combustion engines; fuel in liquid form or as gaseous hydrogen; open since October 2010</td>
<td>Joseph (Ted) Naccarato, Commissioner of Public Works/City Engineer, Phone: (914) 947-2500, josephn@whiteplainsny.gov</td>
</tr>
<tr>
<td>Nevada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Las Vegas Hydrogen Energy Station, Las Vegas, NV</td>
<td>Ongoing facility on city property started as demonstration project to service city vehicles; using delivered liquid hydrogen; open since August 2002</td>
<td>Earl Russell, Director of Building and Safety, Phone: 702-229-4012, earl.russell@lv.gov</td>
</tr>
</tbody>
</table>

Contact Information

For more information visit the [Hydrogen Fueling Station Sitings](http://www.energy.gov/hydrogenfuelingstation).
Future Work: HFS Permitting

- DOE workshop at NASFM annual conference (Atlanta, July 10)
 - Organizing committee (DOE/NREL, NASFM, NCBCS, Chevron, Shell)
 - Invite key fire and building code officials
 - present case studies
 - stations permitted/permitting underway
 - codes/standards applied
 - review and discussion by permitting officials for station(s)
 - network list of permitting officials whose jurisdictions have issued permits
 - Demo information repository prototype
 - web-based tools to “navigate” requirements with database of key standards and codes
 - vet repository and DOE initiative by delegates
- DOE workshop at NCBCS annual conference (Fall 2007)
 - Similar purpose, agenda, format as workshop at NASFM conference
- Regional workshops
 - Areas of focus by HFS developers/auto OEMs
 - Emphasize regional/local permitting issues
Technical Progress

• R&D to establish defensible requirements for standards
 – Integrated Engineering Approaches to Hydrogen Safety
 • CFD modeling of hydrogen leaks in residential garage
 – floor plan, characteristics from Building America model home
 – Buildings and Thermal Systems Center (NREL)
 • CFD simulation of H\textsubscript{2} leak from non-combustible enclosures
 – co-funded with industry through NFPA Research Foundation
 – data for separation distances for H\textsubscript{2}FC in telecom applications
 • Finite element analysis/simulation of high-pressure, composite tank testing
 – collaboration with Lincoln Composites
 – help establish parameters (design of experiments) for tank testing
 • Sensor testing and validation
 – fiber optic sensor under commercial licensing
 – sensor validation laboratory design
Technical Progress: Safe Building Design for Hydrogen Vehicles

Sample architecture used for case study. Pulte Homes, Las Vegas. A-frame roof. 5 kg of H₂ stored in car in garage. Leak-down times from 12 hours to 7 days.
CFD model of 2-car garage. Left half of garage is shown (bilateral symmetry). Color scale is H₂ concentration; full scale is LFL. Leak rate = 5 kg/24 hours (41.5 L/min). 2 vents, 0.85 ft² each. Elapsed time = 83 min. Steady-state achieved.

Source: Keith Gawlik, Dennis Barley
Preliminary Vent Sizing Chart for Buoyancy-Driven Ventilation of H₂ from Building

Based on maximum H₂ concentration = 1% (25% of LFL).

* 29-day leakage rate based on SAE J2578, Appendix C.

Leakage Rate (Based on 5kg of H₂)

<table>
<thead>
<tr>
<th>T, days</th>
<th>T, hrs</th>
<th>L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>6</td>
<td>166</td>
</tr>
<tr>
<td>0.5</td>
<td>12</td>
<td>82.9</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>41.5</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>20.7</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>13.8</td>
</tr>
<tr>
<td>7</td>
<td>168</td>
<td>5.92</td>
</tr>
<tr>
<td>29*</td>
<td>696</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Minimum Area, Each Vent (sq.ft) (Thermal effects excluded)

<table>
<thead>
<tr>
<th>Vent Height, ft</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>17.0</td>
<td>14.7</td>
<td>13.2</td>
<td>12.0</td>
</tr>
<tr>
<td>0.5</td>
<td>8.51</td>
<td>7.37</td>
<td>6.59</td>
<td>6.01</td>
</tr>
<tr>
<td>1</td>
<td>4.25</td>
<td>3.68</td>
<td>3.29</td>
<td>3.01</td>
</tr>
<tr>
<td>2</td>
<td>2.13</td>
<td>1.84</td>
<td>1.65</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>1.42</td>
<td>1.23</td>
<td>1.10</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>0.61</td>
<td>0.53</td>
<td>0.47</td>
<td>0.43</td>
</tr>
<tr>
<td>29*</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Source: Keith Gawlik, Dennis Barley
Technical Progress: Component Testing

• Initiated collaboration with Lincoln Composites on carbon composite tanks
 - Drop Test Simulation
 • obtain geometry material composition and fiber orientation of current tank design
 • build structural finite element model to simulate typical drop test
 - Drop Test Simulation - Next Steps
 • validate model with available experimental results
 • perform design of experiment study to identify impact of several design parameters on structural behavior of tank
 • design exploration parameters include drop angle, material properties, fiber orientation, etc.

• Potential future collaboration
 – Fast-fill efficiency and temperature distribution
 – Low cycle fatigue
 – Crashworthiness (tank system)
Technical Progress: 45º 6 ft. Drop Test – Isometric View

Preliminary Results

Source: Andreas Vlahinos
Technical Progress: Displacement Distribution

Preliminary Results

Source: Andreas Vlahinos
Technical Progress: Stress Distribution
Preliminary Results

Equivalent (von-Mises) Stress
x 1e3 Pa
Max: 2.675e+003
Min: 1.153e+001
2006/10/30 15:04

Source: Andreas Vlahinos
Component Testing: Future Work

• Tank testing simulation/design of experiment
 – write script to automate 3D Model generation
 – build explicit 3D FEA model with composite material elements that include approximately 5000 unique material properties and fiber orientations
 – validate model with available experimental results
• Validate performance-based systems test sequence in SAE J2579
 – Type 3 and 4 tanks
 – expected service life
 – durability under extreme conditions
 – burst tests to evaluate residual strength
• Non-destructive testing, in situ monitoring for high pressure tanks
 – Type 3 and 4 tanks
 – apply advanced optical fiber methods
 – collaboration with tank manufacturers, other laboratories
• HPRD model/validation, reliability data and analysis
Summary

- Consensus national C&S agenda strengthened through National H2-FC C&S Coordinating Committee (DOE, NHA, USFCC)
 - Smooth transition for support of SDO/CDO through DOE/GO and Regulatory Logic
- DOE initiative to facilitate permitting of HFS underway
 - Web-based C&S information repository
- R&D underway for better data, modeling, analysis to support C&S requirements
 - Integrated Engineering Approach
 - safe, energy-efficient building design
 - sensor testing and validation, placement
 - Performance-based component testing
 - SAE J2579 test sequence validation
 - FEA simulation, design of experiment for composite tank testing
- Better harmonization of domestic and international requirements
 - Fuel quality: SAE J2719 and ISO 14687-2 nearly identical
 - US (through DOE/NREL) active in HyApproval to harmonize HFS requirements in EC, US, Japan, China
 - DOE support for US TAGs of ISO TC197 and IEC TC105