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Overview

• Project start date: March 2005
• Project end date*: Feb 2010
• Percent complete*: 45%

* Assumes support for Phases 1 and 2 

• Total Project Funding:
Phase One - 3 years:  $1.65M

– DOE Share: $1.20M
– Contractor Share: $0.45M

Phase Two - 2 years: $1.1M
– DOE Share: $0.8M
– Contractor Share: $0.3M

• Funding for FY07:
$117K as of 4/10/07 (DOE), 
$150K (cost share)

Budget

Timeline

• Participant in DOE MHCoE
- U. Pitt, CMU: modeling of new systems 
and kinetic barriers

- Stanford: thin film systems 
- Caltech, JPL, U. Utah, Hawaii: scaffolds
- Intematix: catalysis

Partners

• System weight and cost

• Large binding energies  and slow H2
sorption kinetics in light metal hydrides 

Technical Barriers

2007 2010
Gravimetric capacity: 4.5% 6%
Volumetric capacity: 0.036 kg/L 0.045 kg/L
Min/Max delivery temp: -30/85°C -40/85°C

Technical System Targets
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To develop and demonstrate a safe and cost-effective light-
metal hydride material system that meets or exceeds the DOE 

goals for reversible on-board hydrogen storage

Overall

2006/2007
• To identify and test new high capacity Li- and Mg-based destabilized hydrides

Screen candidate LiBH4 + MgX destabilized systems and evaluate energetics and kinetics

Down-select systems for additional work

• To apply nano-engineering methods to address kinetics limitations
Determine hydrogen exchange rates in nanoscale MgH2/Si

Evaluate sorption kinetics and thermodynamics of LiBH4 and Mg in carbon aerogel scaffolds
Assess capacity penalty for hydrides in scaffolds (can they be practical?)

Objectives
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Hydride Destabilization 
(addresses thermodynamics)

Reduce reaction enthalpy by forming dehydrogenated alloy
• If alloy is stable w.r.t metal then hydride is destabilized

• System cycles between H-containing state and metal alloy  
⇒ lower ∆H

Approach:
– Hydride Destabilization and Nano-engineering –

Destabilization results in lower ∆H and T1 bar

AH2/B
A + H2

AH2 + xB

ABX + H2

Dehydrogenated state
ΔH large,

T(1 bar) high

EN
ER

G
Y

Stabilized (alloy) state
ΔH smaller,

T(1 bar) lower

Hydrogenated state

Nano-engineering
(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding
• Shorter diffusion distances:  faster hydrogen exchange

• More efficient catalysis pathways

• Nano-scaffolds as hosts for nanostructured hydrides:  
⇒ structure- directing agents, mitigate particle agglomeration

<100 nm

From Petricevic, et al., Carbon 39, 857 (2001)

Enhanced reaction rate and improved cycling  
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New Destabilized Systems
– LiBH4 + MgX –

• Potential systems include: X = F, Cl, OH, O, S, Se, CO3, Si, SO4, 
Cu, Ge, & Ni

12 destabilization reactions identified and characterized using HSC 
modeling
H-capacities ranging from 5.4-9.6 wt.%, T1 bar from -10°C to 430 °C

X = F, S, Se, CO3 tested previously

• In FY06/07, two new systems tested, X = Cl and Cu:
2LiBH4 + MgCl2 ↔ 2LiCl + MgB2 + 4H2 (5.8 wt.%, T1 bar = -10 °C)

No H2 uptake from 2LiCl + MgB2 at 150 bar, up to 250°C (T1bar too low) 

4LiBH4 + Mg2Cu ↔ 4LiH + 2MgB2 + Cu + 6H2 (6.0 wt.%) 
From 4LiBH4 + Mg2Cu, only trace MgB2 formed (4LiBH4 + Mg2Cu did not react 
with each other)

• Neither system is a good candidate for further work
• Results show kinetic limitations in destabilized systems
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MgH2/Si
– Go/No-Go Decision  Qtr 4, FY06 –

• Motivation: prototype system for nanoengineering,  nearly ideal 
thermodynamics (T1bar ~ 50 °C)

• Summary of effort to demonstrate reversibility
Catalysis (tested bulk metals, nanoparticle metals, and oxides for effect on 
dehydrogenation and hydrogenation). All improved dehydrogenation (nano-Ni best).
No hydrogenation observed.
Mechanical dispersion (MgH2 milled with excess Si to create dispersed nano-MgH2). 
Onset of dehydrogenation decreased by up to 100°C.                                                      
No hydrogenation observed.

Mg2Si nanoparticles (tested samples of nano-Mg2Si formed using nano-Si precursors, 
self-propagating reactions, and chemical vapor synthesis (CVS).      
No hydrogenation observed.
Mechano-chemistry (milled Mg2Si formed by powder metallurgy and mechanical synthesis 
in 50 bar of hydrogen, varied milling conditions and included catalysts).                                 
No hydrogenation observed.

• Phase separation or passivation by hydrogen* prevents hydrogenation
* suggestion by Prof. Gabor Somorjai, (MHCoE/Berkeley Hydrogen Storage meeting 3/13/07)

“No-Go” for continued work on MgH2/Si system
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Nano-scale Hydrides in Porous Scaffolds

• Scaffolds are effective structure directing agents for nano-scale 
hydrides

• Kinetics improved by limiting particle size and diffusion distances
• Thermodynamic changes possible through surface/interface 

energy effects

• Initial work on LiBH4 incorporated into carbon aerogels
- Synthesis (resorcinol/formaldehyde condensation)
- Pore sizes (5-25 nm) and volumes (1- 4 cm3/g)
- Relatively chemically inert

- Prototype complex hydride
- Slow kinetics
- Poor reversibility

C-aerogel 
cubes

Mix aerogel and 
LiBH4 under N2

Melt LiBH4 
(T=290 °C)

Aerogel absorbs 
LiBH4

Scrape to remove 
surface material

80-90% of 
pore space 
filled with 
LiBH4

• Aerogels filled with LiBH4 (LiBH4@aerogel) by infiltration from melt:
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TGA (10°C/min) for H2 desorption:  LiBH4 → LiH + B + 1.5H2(13.6 wt %)

Dehydrogenation of LiBH4@C-Aerogel

• Aerogel lowers dehydrogenation temperatures up to 70°C
• Capacity penalty reduced to 40% with high pore volume aerogel

Capacity penalties for LiBH4
in aerogel

13 nm (0.8 cm3/g)  :  66%
25 nm (1.3 cm3/g)  :  56%
40 nm (2.7 cm3/g)* : 40%
Goal (>4 cm3/g) : < 25%

*provided by  Ted Baumann, LLNL

4.6% wt loss

6% wt loss

8 % wt loss New data
LLNL aerogel
8 wt % 
0.072 kg/L H2

40
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METHOD

Determine activation energy 
for dehydrogenation using 
Ozawa analysis:*

Heat samples at multiple ramp 
rates (b); measure transition 
temp (T). Fit data to:

ln(b)= – Ea/(RT) + constant

* Ozawa, T. Bull. Chem. Soc. Jpn. 38, 
1881 (1965).

• Activation energy for dehydrogenation is reduced in aerogel
• Reaction rate (Boltzmann factor) increases by ~ 1000x at 350 °C

Activation Energy for Dehydrogenation 
of LiBH4@C- Aerogel

1
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   13 nm aerogel
Ea = 103 ± 4 kJ/mol

   Graphite control
Ea = 146 ± 3 kJ/mol

   26 nm aerogel
Ea = 111  ± 2 kJ/mol

°C
400                    350
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Quasi-equilibrium Pressure for 
LiBH4@C Aerogel

Aerogel increases the equilibrium pressure of LiBH4 by 10 times 
(at ~ 4 wt % desorbed)
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LiBH4 → LiH + B + 1.5H2 at 300 °C

LiBH4 (28 wt%)@13 nm aerogel
Desorption from 3.5 to 
4.5 wt % wrt LiBH4

Control*:
LiBH4 (50 wt%)/graphite
Desorption from 3.8 to
3.9 wt % wrt LiBH4

~ 10 x higher

• Desorption rate 
accelerates if H2
overpressure is 
removed 

• Result suggests that 
the final pressures 
do represent 
equilibrium

* Could not obtain
good data for
neat LiBH4
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Dehydrogenation Rate at 300 °C 
for LiBH4@C-Aerogel

Incorporation of LiBH4 into the aerogel significantly 
increases the dehydrogenation rate
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Initial portion (1 hr) of equilibrium curves

Aerogel
0.57 wt %/hr 
1.9 wt %/hr wrt LiBH4

Control
0.007 wt %/hr
0.014 wt %/hr wrt LiBH4

• After ~ 0.1 hr the 
desorption rate for the 
aerogel slows significantly 
due to the H2 pressure

• Ratio of the initial 
desorption rates is 150

• Rate for control sample 
increases with dilution by 
graphite

• Initial desorption rate for 
aerogel sample may still 
be influenced by 
hydrogen pressure
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Cycling Behavior : LiBH4@C-Aerogel

• Decreased pore size improves cycling
• Pore size of 40 nm shows bulk behavior

Capacity from dehydrogenation (400 °C, 2 hr) after hydrogenation (100 bar H2, 400°C, 2 hr)
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(~ 2 nm)
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(13 nm)

Aerogel
(26 nm) New data

LLNL aerogel
(40 nm) New dataControl

(nonporous)
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Incorporation of Mg into Carbon Aerogel

•Nickel “wetting layer” enables incorporation of Mg from melt
•Hydrogenation/dehydrogenation measurements in progress
•Significant step toward incorporating LiBH4/MgH2 in scaffold
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Ni + Mg (900 °C, 60 hr)

Ni(NO3)2 (4%H2, 500 °C, 6 hr)
No Ni, Mg (900 °C, 60 hr)

graphite

Mg

Ni
Ni

Oxidation in TGA 
indicates Ni + Mg
sample contains 
1.5 wt% Ni and
16 wt% Mg

small 
MgO

26 nm average pore size (1.3 cm3/g) carbon aerogel
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• Screened new LiBH4/MgX systems, X = Cl and Cu – Destabilization reactions not 
observed in these systems

New Destabilized Systems

• Evaluated large pore volume carbon aerogel – reduced capacity penalty for LiBH4 to 40% 
(goal is 25%)

• Measured equilibrium pressure of LiBH4 in aerogel – ~10x increase at 300°C

• Compared rates of desorption– aerogel potentially ~150x faster at 300oC

• Incorporated Mg into carbon aerogel – Ni used as wetting layer 

Nanoporous Scaffolds

• Reversibility (hydrogenation of Mg2Si) not achieved – tried catalysts, nanoparticles by 
direct synthesis and mechanical dispersion, and mechanically-induced hydrogenation

• Made “No-Go” decision, Sept. 2006 

Nanoparticles / MgH2-Si

Summary
– FY 2006/07 –
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Future Work
– FY2007/08 –

• Explore additional LiBH4 + MgX reactions; determine influence of X 
on kinetics

• Incorporate LiBH4/MgH2 destabilized system into carbon aerogel

- Measure intrinsic dehydrogenation rates of LiBH4@C aerogel, 
i.e., at PH2 → 0

- Test hydrogenation/dehydrogenation behavior of Mg@C
aerogel; Check U. Utrecht claims

- Add LiBH4 to Mg@C
- Incorporate catalysts 
- Optimize aerogel materials (with T. Baumann, LLNL), 

processing, and catalysts (with Utah, Hawaii, and Intematix)

Nanoporous Scaffolds

New Destabilized Systems
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Program Direction
– By System –

Destabilized 
System

Benchmark 2006 Status 2006/07 
Progress

Future

MgH2/Si
5.0 wt.%,
0.083 kg/L

est. T1 bar=30°C

Prototype system
<2007 goal (including 
system penalty)

•Kinetics too slow
•T (dehyd) >200°C
•Hydrogenation not 
achieved

•Reversibility still not 
observed
•No-go decision Sept 
‘06

LiBH4 / MgH2 

@C aerogel
11.4 wt.%, 0.095 kg/L 

w/o aerogel,
est. T1 bar=170°C

Could meet 2010 system 
cap. goal (assuming 25% 
aerogel and 25% system 

penalties)

Lowered LiBH4
dehydrogenation temp 
by 70°C in C-scaffold

•Reduced capacity 
penalty to 40%
•Measured 10x 
equilibrium pressure
•Incorporated Mg into 
aerogel
•Measured > 150x 
reaction rate

•Incorporate full destab. 
system in scaffold
•Optimize scaffold

LiBH4 / MgF2

7.6 wt%,
est. T1 bar=150°C

Could meet 2010 system 
cap. goal

Hydrogen uptake 
~6.5% at 300-350oC
Dehydrogenation 5.3%
Not fully reversible

Candidate for 
incorporation into 
scaffold

LiBH4 / MgS
8.0 wt%,

est. T1 bar=170°C

Could meet 2010 system 
cap. goal

Hydrogen uptake ~6% 
at 300oC
Dehydrogenation 4.3%
Not fully reversible

Candidate for 
incorporation into 
scaffold

Other LiBH4 / MgX
4-10 wt.%,

est. T1 bar :  -10 to 
430°C

Could meet 2007 goal 
(including moderate 

system penalty)

Sorption meas.: X=CO3
No destabilization

Sorption meas.: X=Cl, 
Cu
No destabilization

•Test new destab. 
agents, X=O, OH, Ni 
•Use nano-engineering 
to improve kinetics
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