Synthesis and Characterization of Alanes for Automotive Applications

Jason Graetz, J. Wegrzyn, J. Reilly, J. Johnson, WM Zhou

BROOKHAVEN NATIONAL LABORATORY

Part of the DOE Metal Hydride Center of Excellence

05/17/2006

Project ID #: ST20

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start date: FY05
• Project end date: FY10
• 40 % complete

Budget
• Expected total project funding:
 – $3.00M (DOE)
• Funding received in FY06
 – $400K (DOE)
• Funding for FY07:
 – $925K (DOE)

Barriers
MYPP Section 3.3.4.2.1 On-Board Storage Barriers
A. Weight & Volume
B. Cost
C. Efficiency
D. Durability/Operability
E. Charge/Discharge Rates
R. Regeneration Processes

Partners and Collaborators
• Project D (aluminum hydride) Lead
 - JPL, U. Hawaii, ORNL, SRNL, SNL
• Chemical Hydride Center
• IPHE and IEA collaborations
 - IFE (Norway), Polish Academy of Sciences, Russian Academy of Sciences, Academy of Sciences of Ukraine
Challenges and Objectives

Goal: Develop and demonstrate a hydrogen storage system that meets DOE targets using aluminum hydride as a hydrogen fuel source.

Challenge: AlH$_3$ thermodynamically unstable below 7 kbar (300K)
 1. In an AlH$_3$ system H$_2$ evolution controlled by T (rather than P) so the ability to tune decomposition kinetics will be critical
 - Various routes exist to adjust kinetics (e.g. size & coatings)
 2. The key issue is regeneration (hydrogenation of Al metal)
 - Multiple regeneration pathways are being investigated

Objectives:
 1. Produce aluminum hydride with 9 wt. % H$_2$ and 0.13 kg H$_2$/L
 2. Develop practical and economical process for the regeneration of AlH$_3$ from the decomposed Al.
 3. Assist in the design for an onboard fuel tank delivery system
BNL Approach

Task 1: Synthesis
Synthesize α-AlH$_3$ and vary particle size (0.1-50 μm) & surface coating

Task 2: Properties
Decomposition rates for α-AlH$_3$ as a function of particle size & morphology

Task 3: Regeneration
- Recycling: adapt synthesis to reduce/reuse byproducts
- Organometallic: Direct Al hydrogenation in organic solvents

Task 4: Tank Study
Refueling strategy - off-board (transfer of liquid/powder, tank swap, etc.)

Task 5: Management
- Coordinate MHCoE Alane subgroup
- Partnerships and reporting: supplying partners with samples (e.g. AlH$_3$)
- Materials characterization at unique BNL facilities (e.g. NSLS and CFN)
Why AlH$_3$?

– Large gravimetric & volumetric capacity
 10.1 wt% (2010 S-Target = 6.0)
 149 g/L (2010 S-Target = 45)

– Low decomposition enthalpy
 $\Delta H_{\alpha AlH_3} \approx 7 \text{ kJ/mol } H_2$ ($\approx 1/5 \Delta H_{NaAlH_4}$)

– Rapid H$_2$ evolution rates at low T
 Meets DOE target (50 kW FC) at 115°C with 45% FC efficiency
 (120kW at 100%)

– Decomposition rates tuned through particle size and coatings

– High purity H$_2$ - AlH$_3$ decomposes to Al and H$_2$ (no side reactions)

– Cyclability - Offboard regeneration may reduce cycling problems

– Regeneration will be challenging, but intrinsic energy costs are low
Progress on Regeneration

- **FY06: Background studies** - regeneration requires a basic understanding of physics/chemistry of AlH₃
 - Crystallographic Structures of AlH₃
 - Thermodynamics
 - $P-T$ phase diagram for α-AlH₃
 - Literature Review (selected organometallic route for exp. study)
 - Preliminary experimental design and safety review

- **Program Review Feedback** - focus on regeneration

- **FY07 - Multiple approaches to regeneration**
 - Recycling route studies (e.g. LiCl splitting)
 - Organometallic route - Experimental progress to date:
 - Retrofit 200 bar Parr reactor and purchased 340 bar PPI reactor
 - Preliminary studies on AlH₃-TEDA in THF and dodecane
 - Reduced hydrogenation pressure using activated Al powder
 - Electrochemical route being investigated at SRNL
 - Supercritical fluid route being investigated at UH (proposal submitted)
Synthesis of AlH$_3$

- Regeneration rate and efficiency will likely be a function of crystallite size and surface condition
- Different AlH$_3$ morphologies easily prepared in conventional procedure

$$3\text{LiAlH}_4 + \text{AlCl}_3 + \text{ether} \rightarrow 3\text{LiCl} \downarrow + 4\text{AlH}_3\cdot1.2[(\text{C}_2\text{H}_5)_2\text{O}] + \text{ether}$$

Desolvation

Batch/Continuous Reactions

Microcrystallization Reaction

- Surface coatings (e.g. oxides) introduced through alcohol wash
Which Structure of AlH₃ is Most Stable?

– Regeneration requires better understanding of phases and stability
– 2005 Ke et al. identified two structures of AlH₃ (orthorhombic Cmcm and cubic Fd-3m) more stable than α-AlH₃ (hexagonal) using DFT
– 2006 IFE group solved the structure of α’-AlH₃ (orthorhombic, Cmcm)
– 2006 Collaboration UH, BNL and IFE synthesized and solved structures of β-AlH₃ (cubic, Fd-3m) and γ-AlH₃ (tetragonal, Pnnm)
– All three phases less stable than α-AlH₃ at temperatures ≥ 300K

Formation of α-AlH$_3$ From the H$_2$ and Al

- Does α-AlH$_3$ transform to a more stable phase at high pressure?
- What does the α-AlH$_3$ phase diagram look like?

Structural studies of α-AlH$_3$ show no first-order phase transition at high pressure*

DFT results based on exp. lattice suggest structure is destabilized at pressure**

No hydrogenation below 573K - low T region of phase diagram calculated from ΔG

AlH$_3$ formation limited by thermodynamics and low temperature kinetics

*Performed by synchrotron x-ray diffraction (funded through BES)

**Funded through BES
Regeneration Energy Requirements and
BNL Targets

In an effort to concentrate on the most promising pathways we have established two regeneration targets:

(1) Energy required for regeneration will not exceed 30% of the fuel energy
 - One mole of AlH_3 contains 360 kJ of fuel energy based on the lower heating value $LHV_{H_2}=120$ kJ/g = 240 kJ/mol H_2. Therefore, 30% energy target equivalent to $\Delta E_{\text{regen}} \leq 73$ kJ/mol H_2
 - Direct hydrogenation of Al to form AlH_3 (298K) requires a minimum of 0.13 J for every 1.0 J of fuel energy (13% of fuel energy needed for regeneration)

(2) Regeneration process will produce AlH_3 with at least 90% purity
 - Offboard hydrogenation will utilize spent Al
Recycling Route - LiCl splitting

Synthesis: $\text{AlCl}_3 + 3\text{LiH} \rightarrow \text{AlH}_3 + 3\text{LiCl}$

- Recycling byproducts (LiCl and Al) requires splitting 3LiCl per AlH_3:

Recycling: $\text{Al} + 3\text{LiCl} + 3/2\text{H}_2 \rightarrow \text{AlCl}_3 + 3\text{LiH}$

- With perfect efficiency (AlCl_3 & LiH formation energy not wasted):

$$\Delta E_{\text{recycle}} \geq 167 \text{ kJ/mol H}_2$$

- Recycling AlH_3 by splitting LiCl ($298K$) requires a minimum of $0.7J$ for every $1J$ of fuel (**70% of fuel energy required for regeneration**)

- Recycling AlH_3 by splitting LiCl will not be investigated further
Liquid Organometallic Route - Overview

– Form AlH₃ complexes from Al and H₂ in organic solvents (THF, Et₂O)
– Reduce P_{eq} by forming a more stable intermediate phase
– Reaction between Al, H₂ and triethylenediamine (TEDA = C₆H₁₂N₂)

\[
\text{Al} + \text{H}_2 + \text{TEDA} \rightarrow \text{AlH}_3
\]

– **FY07 Milestone**: Improve hydrogenation kinetics & reduce required pressure
– Second step required to extract TEDA and recover pure AlH₃:

\[
\text{AlH}_3 \rightarrow \text{Al} + \text{H}_2 + \text{TEDA}
\]

– Another route under investigation is a reversible metal-organic hydride:

\[
\text{Al} + \text{H}_2 + \text{TEDA} \leftrightarrow \text{AlH}_3
\]

2.1 wt % H₂ (theoretical)
Liquid Organometallic Route - Results

Organometallic hydrogenation of aluminum

Hydrogenation of activated Al (Al*) at 300K occurred at much lower pressures than expected (no reaction with non-activated Al up to 110 bar)

Reaction is reversible: TEDA + Al* + H₂ ↔ TEDA-AlH₃ (theor. 2.1 wt% H₂)

Drop in hydrogen pressure indicates hydrogenation (~2 wt% total)
Liquid Organometallic Route - XRD Analysis

- Powder XRD confirms 100% of Al consumed in reaction (yield near 100%)
- No evidence of any phase other than TEDA-AlH₃ (no side reactions)

standard of AlH₃-TEDA prepared from AlH₃ and TEDA in THF
Product: TEDA-AlH₃
No trace of Al or TEDA

Starting materials:
- TEDA (solid)
- Al powder (solid)
- THF solvent (liquid)
- H₂ (gas)
Liquid Organometallic Route - FTIR Analysis

- Reaction works equally well in polar (THF) and nonpolar (dodecane) solvents.

No change in solvent (dodecane) after multiple hydrogenation cycles:
- no trace of AlH₃ in solution
- no solvent deterioration

- Solvent before hydrogenation
- Solvent after hydrogenation

No Al-H signal
Energy required to form TEDA-AlH$_3$ is small, but how much energy is required to break AlH$_3$ from TEDA to recover pure AlH$_3$?

From these values we can approximate the heat required to release AlH$_3$:

- TEDA-AlH$_3$ → TEDA + Al + 3/2H$_2$
 \[\Delta H_{TEDA-AlH_3} = 53 \text{ kJ/mol H}_2 \]
- AlH$_3$ → Al + 3/2H$_2$
 \[\Delta H_{AlH_3} = 7 \text{ kJ/mol H}_2 \]
- TEDA-AlH$_3$ → TEDA + AlH$_3$
 \[\Delta H \approx 46 \text{ kJ/mol H}_2 \]

- Regeneration will require a minimum of 20% of the AlH$_3$ fuel energy
- Although energy requirement is not prohibitive the challenge will be extracting AlH$_3$ without decomposition
Path Forward - Regeneration

Preliminary Studies:
- Crystal structures and phase stabilities (complete)
- Reproduce Ashby’s reaction (complete)
- Reduce hydrogenation pressure and temperature (complete)
- Explore Activated Al powder (ongoing)

Regressive Routes To Be Investigated:
Preparation of pure AlH$_3$ by isolating from alane-adduct

\[
\text{AlH}_3 + \text{amine/adduct} \rightarrow \text{AlH}_3 + \text{amine/adduct}
\]

- Examine amine/adduct substitutions that form less stable compounds
- Evaluate energy requirements

Reversible metal organic hydrides:

\[
\text{Al} + \text{H}_2 + \text{amine/adduct} \leftrightarrow \text{AlH}_3
\]

- Examine solvent and adduct substitutions to determine if capacity can be improved
- Evaluate thermodynamics
Path Forward - Regeneration

Collaborations:

MHCoE Theory Group - Identify possible adduct substitutions; Search for lighter adducts that accommodate multiple AlH₃ units; amine-alane chemistry

Chemical Hydride Center of Excellence - Information exchange; Synergisms between amine-borane and amine-alane investigations

IPHE/IEA - Fundamental high pressure studies; high pressure hydrogenation; decomposition kinetics, in situ synchrotron XRD

Decisions and Milestones:

- FY07 Milestone: Hydrogenate Al at low temp and pressure (P<70 bar)
- FY08 Go/no-go: Regeneration using organometallic approach
- FY09: Overall objective to regenerate AlH₃ with energy penalty \(\leq 73 \text{ kJ/H}_2 \) and a yield of \(\geq 90\% \) and (2) Determine mass/energy balance over 100 cycles on 5g samples
Project Summary

Goal: Develop and demonstrate a hydrogen storage system that meets DOE targets using aluminum hydride as a hydrogen fuel source.

Significant accomplishment: **Direct hydrogenation of activated Al powder at P<35 bar (ten-fold reduction in pressure) with a yield near 100%**

<table>
<thead>
<tr>
<th>Storage Parameter</th>
<th>Units</th>
<th>2010 System Target</th>
<th>FY07 materials*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravimetric Capacity</td>
<td>kWh/kg, wt. % H₂</td>
<td>2.0, 6.0</td>
<td>3.17(3), 9.5(1)</td>
</tr>
<tr>
<td>Volumetric Capacity</td>
<td>kWh/L, Kg H₂/L</td>
<td>1.5, 0.045</td>
<td>4.75(4)x, 0.143(2)</td>
</tr>
<tr>
<td>Desorption Temperature</td>
<td>ºC</td>
<td>85</td>
<td><100</td>
</tr>
<tr>
<td>Rate**(114 ºC)</td>
<td>g/s/kW</td>
<td>1.0**</td>
<td>0.14(1) / 1.0(1)</td>
</tr>
<tr>
<td>BNL Regeneration Target</td>
<td>kJ/mol H₂</td>
<td>73</td>
<td>—</td>
</tr>
</tbody>
</table>

* Data is based on material only, not system value; ** Based on 50kW FC with 45% efficiency for 100kg AlH₃; x Does not account for packing density (a conservative estimate for packing density is 50%)