Process for the Regeneration of Sodium Borate to Sodium Borohydride

Oscar A. Moreno (P.I.), Michael T. Kelly, Jeffrey V. Ortega, Ying Wu
Millennium Cell Inc.,
1 Industrial Way West,
Eatontown, NJ 07724

2007 DOE Hydrogen Program Annual Merit Review

Project ID #: STP 15
Contract #: DE-FC36-04GO14008

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- **Project start date:** Fiscal Year 2004
- **Project end date:** Fiscal Year 2006
- **Percent complete:** 90%

Barriers
- A. Cost
- C. Efficiency
- G. Life Cycle and Efficiency Analyses
- Q. Regeneration for Irreversible Systems
- R. By-Product Removal
- Other: Applicable to Off-Board Delivery and Storage

Budget
- **Total funding:** $4.5 MM, 3 yrs
- **DOE share:** $3.6 MM
- **MCEL share:** $0.6 MM
- **APCI share:** $0.4 MM
- **Funding received in FY06:** $0.566 MM
- **Funding for FY07:** $0.120 MM

Partners
- Millennium Cell - Na/B Separation, Engineering, Membrane development.
- Princeton University - Direct borate electrolysis.
Objectives

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Project Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Cost</td>
<td>Develop regeneration process for NaBH₄ that significantly lowers its cost</td>
</tr>
<tr>
<td>C. Efficiency</td>
<td>Improve overall energy efficiency; Demonstrate feasibility of achieving ~50% “well-to-tank” efficiency.</td>
</tr>
<tr>
<td>G. Life Cycle and Efficiency Analyses</td>
<td>Conduct a high-level energy efficiency assessment based on the newly-developed re-generation process.</td>
</tr>
<tr>
<td>Q. Regeneration Processes for Irreversible Systems</td>
<td>Develop energy efficient and cost effective process for off-board regeneration of NaBH₄.</td>
</tr>
<tr>
<td>R. By-Product Removal</td>
<td>Develop a process that re-uses the by-product NaBO₂, thereby completing the recycling loop.</td>
</tr>
</tbody>
</table>
Status Against DOE Targets

Objective:
- Reduce SBH cost

Status:
- Current SBH: **$40-60** /kg purchased
- Reported in May 2005: estimated ~$7/kg production cost when NaOH electrolysis is implemented

Further cost reduction:
- Co-production of Na and Boric acid from recycled borate
- One-pot reaction from borate to SBH.

DOE Target:
- $2-3/kg H₂ is equivalent to $0.40-0.50/kg SBH.
Approach

- Use Electrochemical process to achieve high energy efficiency
 - Highly efficient pathway to key precursor for SBH.
 - Direct electrolysis of spent fuel
 - One-pot electrolysis for SBH synthesis

- Reduce number of steps in regeneration process
 - Eliminate costly and inefficient separation and purification steps

- Couple engineering development with bench scale testing
 - Safety and cost considerations

- Multi-discipline approach that includes chemistry, materials science, and engineering
 - Reaction kinetics studies
 - Materials compatibility and durability studies
 - Reactor and process designs
Approach
- utilizing recycled material

Spent fuel (NaBO₂/H₂O) → Electrolysis → 3 NaOH → Electrolysis → H₂

4 Na → H₂ → 3 NaOCH₃ → H₂O

B(OCH₃)₃ → MeOH

MeOH, H₂O → MeOH, H₂O → H₂O

NaBH₄ → H₂

Recycle

3 NaOH, NaBH₄, H₂O → 3 NaOH, NaBH₄, H₂O

MeOH, H₂O → B(OCH₃)₃/3MeOH azeotrope

Na₂B₄O₇ or H₃BO₃ → MeOH

H₂O → H₂
Accomplishments

Reaction Chemistry
- Measured current density in NaOH and NaBO$_2$ electrolysis
- Demonstrated that precursors to NaBH$_4$ synthesis can be made from the direct electrolysis of spent fuel
- Showed the feasibility of synthesizing BH$_4$ in ionic liquids at room temperature (current commercial NaBH$_4$ process: 275°C)

Preliminary Engineering Assessment
- Completed preliminary engineering:
 - PFDs, P&IDs, Equipment List, Equipment Specs
- Materials performance testing for reactor:
- Process modeling using HYSYS: 40% complete
- Safety and hazard assessment: 40% complete

Preliminary Cost Assessment
- Established plant scale
- Gathered initial information on electrolyzer cost
“One-Pot” Borohydride Electrochemical Generation

\[
\begin{align*}
\text{LiBr} & \rightarrow \text{Li} + \text{Br}_2 \quad \text{eq 1} \\
\text{Li} + \text{H}_2 & \rightarrow \text{LiH} \quad \text{eq 2} \\
\text{LiH} + \text{B}_2\text{O}_3 & \rightarrow \text{LiBO}_2 + \text{LiBH}_4 \quad \text{eq 3}
\end{align*}
\]

- Reaction sequence takes place in one pot, with no need for separations
- Yield is currently low (<10%), most likely due to the low solubility of \(\text{H}_2 \) in the melt at reaction temperature (275 °C).
- Work at subcontractor (Princeton) **focused on utilizing melts with higher \(\text{H}_2 \) solubility**

Status:
- **1st Step:** Demonstrated the hydride transfer chemistry with commercially available hydrides and borate
- **2nd Step:** Will Attempt electrochemical synthesis of hydride when the chemistry and analysis methods are in hand
One-pot SBH synthesis in ionic liquids

<table>
<thead>
<tr>
<th>Ionic Liquids</th>
<th>M.P. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butyl-1-methyl-pyrrolidinium tris(pentafluoroethyl)trifluorophosphate</td>
<td>-50</td>
</tr>
<tr>
<td>Trihexyl-tetradecyl-phosphonium tris(pentafluoroethyl)trifluorophosphate</td>
<td>-50</td>
</tr>
<tr>
<td>1-butyl-2,3-dimethylimidazolium chloride</td>
<td>89</td>
</tr>
</tbody>
</table>

- **Step 1**: successfully demonstrated the synthesis of NaBH$_4$ in the first two ionic liquids at room temperature, with hydride starting material.
- **Remain to be shown**: same reactions can take place with electrochemically generated hydride.
Experimental Focus:
- Electrochemical generation of hydride with subsequent formation of BH$_4^-$ in the same cell.
- Trimethyl borate species has been shown to be electrochemically activated at Pt and Li electrodes.

Results so far:
- In the absence of Li or Na as counter cations to the hydride, B-O species was converted into B-F species.
- Conversion of B-O to B-F occurs only with applied voltage indicating electroactivity.

Future experiments:
- Will include addition of H$_2$ at cathode as well as Li or Na to make borohydride.
Method:
Direct recovery of Na metal and borate from NaBO₂ spent fuel, for use in SBH synthesis

Experimental Set-up

NaSICON membrane
- Aqueous NaBO₂
- Molten Sodium Pool
- NaSICON Membrane
- Nickel Plate
- Cathode
- Anode

Na-β”-alumina membrane
- Aqueous Metaborate
- Molten Sodium Pool
- Alumina Tube
- Nickel Plate
- Cathode
- Anode
Sodium and Boron Separation
- Effect of Applied Potential

Cathode Rxn: \[4 \text{Na}^+ + 4 \text{e}^- \rightarrow 4 \text{Na} \]
Anode Rxn: \[4 \text{OH}^- \rightarrow \text{O}_2 + 2 \text{H}_2\text{O} + 4 \text{e}^- \]
Anode Solution Rxn: \[4 \text{B(OH)}_4^- \rightarrow 4 \text{B(OH)}_3 + 4 \text{OH}^- \]
Overall Rxn: \[\text{NaB(OH)}_4 \rightarrow \text{Na} + \text{B(OH)}_3 + \frac{1}{4} \text{O}_2 + \frac{1}{2} \text{H}_2\text{O} \]

- Onset potential = 3.2 V
- Higher potential required to achieve sufficient reaction rate

Example Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>Potential (V)</th>
<th>Current (mA)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run A</td>
<td>3.5</td>
<td>4.8</td>
<td>85%</td>
</tr>
<tr>
<td>Run B</td>
<td>5.0</td>
<td>125</td>
<td>96%</td>
</tr>
</tbody>
</table>
Sodium and Borate Separation

<table>
<thead>
<tr>
<th>Aqueous Solution</th>
<th>Na-β”-alumina</th>
<th>NaSICON</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaBO₂ (concentrated)</td>
<td>100% Current Efficiency</td>
<td>No reaction</td>
</tr>
<tr>
<td>NaBO₂ (dilute)</td>
<td>Failed – 0% yield</td>
<td>60-70% yield</td>
</tr>
<tr>
<td>NaOH (concentrated)</td>
<td>100% Current Efficiency</td>
<td>No reaction</td>
</tr>
<tr>
<td>NaOH (dilute)</td>
<td>To be tested</td>
<td>Partial rxn, membrane damaged</td>
</tr>
<tr>
<td>Borax (concentrated)</td>
<td>100% Current Efficiency</td>
<td>To be tested</td>
</tr>
<tr>
<td>Borax (dilute)</td>
<td>To be tested</td>
<td>30-35% yield</td>
</tr>
<tr>
<td>“Spent Fuel” from HOD®</td>
<td>100% Current Efficiency</td>
<td>Failed, membrane damaged</td>
</tr>
</tbody>
</table>

Initial Experiments Appear to Indicate:
• Na-β”-Alumina is more effective with concentrated solutions while NaSICON is more effective with dilute solutions
• Further experimentation needed to obtain additional insight
• Higher current densities were achieved in hydroxide solutions than in the corresponding borate solutions.

• Membranes exhibited better stability in borate solutions.

• Use of β”-alumina allowed 99+% current efficiencies in both the borate and the hydroxide melts tested.

Note: β”-Alumina membranes with Ni counter electrode
Theoretical Minimum Potential = 2.94 V at 115 °C

- Increasing applied potential increases current density but also decreases the voltage efficiency.

Optimized Current Density

Measured Current Density vs. Voltage Efficiency
Effects of Membrane Composition

Of the two types of β''-membranes tested, Membrane A exhibits higher current densities and is more resistant to failure than Membrane B.
Preliminary Engineering

Tasks

- Based on results generated from bench scale experiments, design a process for scale up operation and cost estimates
- Determine materials of construction for components of electrochemical reactor.
- Verify physical properties of membrane.
- Design of electrochemical reactor for continuous flow operation.
- Perform safety and hazard analysis (e.g. FMEA)

Accomplishments

- Established basic Process Flow Diagram (PFD)
- Started to generated equipment list and equipment specifications
- Developed Piping and Instrumentation Diagram (P&ID)
- Completed preliminary mass balance
- Process simulation (modeling) using Aspen HYSYS software
Preliminary Engineering

Molten salt electrolysis requires converting spent fuel to anhydrous starting materials – high cost

Aqueous electrolysis allows the direct use of spent fuel – low cost

Trade-off: lower current density, therefore more membrane required
Process Flow Diagram

Initial Process Flow Design

System Components:*

- Sodium Storage Vessel T-101
- Sodium Heater HX-101
- E-Reactor R-101
- Caustic Soda Heater HX-102
- Caustic Soda Pump P-102
- Caustic Soda Storage Vessel T-102

Flow Pathways:

4. Sodium is heated in Sodium Heater HX-101.
5. Sodium flows to E-Reactor R-101.
7. Process water from Process Water Tank T-105 is used in the process.

Additional Components:

- Caustic Condenser HX-103
- Small Flash Drum T-104
- Water-05-T-031

To Atmosphere:

- Vapor-05-T-007

System Notes:

- The system uses a variety of heat exchangers and pumps to control the flow and temperature of sodium and other chemicals.
- The process is designed to efficiently manage the flow of materials between the various vessels and components.
Cost Reduction Summary

- Of the 3 options investigated, only the route via Na cost reduction is mature enough to allow for a reasonable preliminary cost analysis.
- For the Na/B co-production route and the direct BH route, more data is needed on reaction yields and electrolytic efficiency before conducting cost analysis.

Na Metal Production Cost

via electrolysis of NaOH or NaCl

- NaCl (anhydr.)
 - Na Price: $3.50/kg Na
 - Est'd Prod. Cost ($/kg Na): $1.50
 - Est'd elec input (kWh/kg Na): 10 kWh/kg Na

- NaOH (melt) w/ H2 assist
 - Na Price: $1.13/kg Na
 - Est'd Prod. Cost ($/kg Na): $1.13
 - Est'd elec input (kWh/kg Na): 1.7 kWh/kg Na

- NaOH (aq.)
 - Na Price: $0.90/kg Na
 - Est'd Prod. Cost ($/kg Na): $0.90
 - Est'd elec input (kWh/kg Na): 3.6 kWh/kg Na

NaBH₄ Cost Reduction Roadmap

- Current
 - Production Cost ($/kg NaBH₄) = $1.2/kg Na
- 1st Improv't
 - Achieved
- 2nd Improv't
- Final Target
Improvements in Efficiency

Producing Na from NaOH instead of NaCl is more energy efficient

Cell Temp
- NaCl (anhydr.)
- NaOH (melt) w/ H2 assist
- NaOH (aq.)

Cell Voltage
- NaCl (anhydr.)
- NaOH (melt) w/ H2 assist
- NaOH (aq.)

Elec Efficiency
- NaCl (anhydr.)
- NaOH (melt) w/ H2 assist
- NaOH (aq.)

NaOH Electrolysis is
Lower in Temperature
Lower in Voltage
Higher in Efficiency
Comparison of Electrical Energy Input

<table>
<thead>
<tr>
<th></th>
<th>NaCl (anhydrous)</th>
<th>NaOH (Anhydrous)</th>
<th>Aqueous NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current efficiency</td>
<td>80 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Voltage efficiency</td>
<td>56 %</td>
<td>90% (with H₂-assist)</td>
<td>70 %</td>
</tr>
<tr>
<td>Overall electrical efficiency</td>
<td>45%</td>
<td>90%</td>
<td>70%</td>
</tr>
<tr>
<td>Temperature</td>
<td>600 °C</td>
<td>350 °C</td>
<td>110 °C</td>
</tr>
<tr>
<td>Cell Operating Voltage</td>
<td>6 - 7 V</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Electrical energy input per kg Na produced</td>
<td>10 kWh/kg</td>
<td>1.6 – 3.6 kWh/kg</td>
<td>2.4 – 4.2 kWh/kg</td>
</tr>
<tr>
<td>Estimated Na production cost</td>
<td>$ 1.57 /kg</td>
<td>$1.22 /kg</td>
<td>$0.90 /kg</td>
</tr>
</tbody>
</table>
Well-to-Tank Efficiency

Energy Input for the Production of NaBH₄ via 3 different methods of Na production

- The majority of the energy input is in the Na production
- Producing Na by H₂-assisted electrolysis dramatically reduced the upfront energy input in the NaBH₄ manufacturing process.
- US production of Na metal uses hydro-electric energy almost exclusively, resulting in very little CO₂ emission.

W-t-T Efficiency: 25% 54% 60%
Future Work

Preliminary Engineering Assessment
- Continue materials chemical compatibility tests
- Complete HYSYS process modeling for the process
- Complete safety and hazard assessment

Membrane Testing
- Explore methods to increase current densities in borate electrolysis
- Additional experiments using other inexpensive sodium salts, e.g. borax or borate-caustic mixtures
- Long-term stability tests
- Equivalent quantitative experiments with NaSICON membranes
- Explore new electrochemical cell configuration

Preliminary Cost Assessment
- Complete cost assessment associated with electrolysis of borate
- Coordinate with TIAX

Project Go/no-go Decision with DOE
After demonstration SBH regeneration cost reduction via NaOH electrolysis last year, further demonstrated feasibility of direct electrolysis of spent fuel (NaBO₂) to obtain precursors to SBH synthesis, namely Na metal and non caustic borates.

- Expanded the one-pot reaction of borohydride synthesis in medium temperature halide melt to room temperature ionic liquids.
- Initiated process engineering assessment in order to establish cost estimates of SBH regeneration
- Gained significant insight into the concentration sensitivity of the electrolytic processes, particularly its effect on various membranes
- Continue down the path of cost reduction and efficiency improvement