Neutron Characterization and Calphad in support of the Metal Hydride Center of Excellence

Terry Udovic
Ursula Kattner

May 16th 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start FY05
- Project end FY09
- 50% complete

Barriers addressed
- Characterization of structures and hydrogen bonding in new storage materials
- Lack of phase diagram data on potential new storage materials

Budget
- FY05 $125k
- FY06 $156k
- FY07 $276k
- FY08 (req.) $287k

Partners

NIST has provided over 420 instrument days to date and 2 FTE’s/year for the HSCoE and MHCoE combined.
Objectives

Overall: Support the development of hydrogen storage materials by providing timely, comprehensive characterization of Center-developed materials and storage systems using state-of-the-art neutron methods and Calphad. Help speed the development and optimization of storage materials that can meet the 2010 DOE system target of 6 wt% and 45 g/L capacities.

- Characterize structures, compositions, and absorption site interaction potentials for hydrogen in candidate materials.
- Provide Calphad calculations of phase relationships of potentially promising hydrides.
Approach

• **Neutron methods**
 – determine elemental compositions of materials (non-destructive prompt-gamma activation analysis of H stoichiometries)
 – determine location of H and crystal structures of materials (neutron diffraction superior to XRD for “seeing” light H and D)
 – determine bonding of absorbed H (unlike IR and Raman, neutron vibrational spectroscopy “sees” all H vibrations for straightforward comparison with first-principles calculations)
 – elucidate H diffusion mechanisms (faster dynamics timescale of neutron quasielastic scattering complements NMR; transport mechanisms gleaned from momentum transfer dependence)

• **Calphad methods**
 – develop a thermodynamic database from the available literature and first-principles calculations
 – incorporate database into an overall temperature-pressure-composition framework for multicomponent metal-hydrogen systems.
Technical Accomplishment

Structure Identification of Li$_4$Ge$_2$D and Li$_4$Si$_2$D

Li$_4$Ge$_2$D
- $R_{wp}=3.94\%$
- $R_p=3.34\%$
- $\chi^2=1.00$

Li$_4$Si$_2$D
- $R_{wp}=5.85\%$
- $R_p=4.84\%$
- $\chi^2=1.977$

Strong Li-H binding in Li$_4$Ge$_2$H and Li$_4$Si$_2$H is primarily responsible for the stabilization of these hydrides.

Note: LiH (Li-H ~ 2.038Å)
Technical Accomplishment

Measured neutron vibrational spectra for Li₄Ge₂H and Li₄Si₂H

Characterized the phonon modes with first-principles phonon calculations

Assignments of the phonon modes are consistent with NPD-observed Li-H bond lengths and the corresponding bond strength.

<table>
<thead>
<tr>
<th></th>
<th>Ge</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Li1</td>
<td>2.091Å</td>
<td>2.087Å</td>
</tr>
<tr>
<td>H-Li2</td>
<td>2.007Å</td>
<td>2.016Å</td>
</tr>
<tr>
<td>H-Li3</td>
<td>1.939Å</td>
<td>1.881Å</td>
</tr>
</tbody>
</table>

(in preparation 2007)
Technical Accomplishment

Destabilization of the 2CaH$_2$ / Si system

\[2\text{CaH}_2 + \text{Si} \rightarrow \text{Ca}_2\text{Si} + 2\text{H}_2 \]

200-300°C

>500°C

Amorphous hydride phase

Hydrogen Induced Amorphization

NPD, NVS, and Isotherm Results

- Ca$_2$Si readily absorbs H$_2$ at P < 1 atm.
- Quite rapid absorption kinetics (few min)
- No obvious pressure plateau
- Formation of amorphous hydride upon hydrogenation

Easy H$_2$ absorption compared to hard-to-hydride Mg$_2$Si at 200-300°C.

“Amorphization” could be a way to accelerate the hydrogenation kinetics.

Technical Accomplishment

Destabilization of the CaH₂ / MgH₂ / Si system

- Add MgH₂ (higher H₂ storage capacity); possibly improve slow Mg₂Si kinetics
- Single-phase solid solution Ca₂₋ₓMgₓSn observed in (1-x)Ca₂Sn-(x)Mg₂Sn system

\[\text{CaH}_2 + \text{MgH}_2 + \text{Si} \rightarrow \text{CaMgSi} + 2\text{H}_2 \]

(2-x) CaH₂ + x MgH₂ + Si → Ca₂₋ₓMgₓSi (0<x<1)

Intermediate compositions are Ca₂Si/CaMgSi two-phase mixture (distinct from Ca₂₋ₓMgₓSn)

J. Alloys Comp. in press (2007)
Hydrogenation Properties of $\text{Ca}_{2-x}\text{Mg}_x\text{Si}$

- CaMgSi hardly absorbs H_2 under 0-70 atm at 200-300°C.
- Hydrogenation behavior of $(1-x)\text{Ca}_2\text{Si}-x\text{CaMgSi}$ compositions is dominated by Ca_2Si.

Isotherm measurements

<table>
<thead>
<tr>
<th>Composition</th>
<th>Neutron Counts</th>
</tr>
</thead>
</table>
| $\text{Ca}_{4/3}\text{Mg}_{2/3}\text{Si}$ $(x=2/3)$ | |}
| $\text{Ca}_{5/3}\text{Mg}_{1/3}\text{Si}$ $(x=1/3)$ | |}
| Ca_2Si $(x=0)$ | |}

NVS

(After hydrogenation at 200°C 50 atm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0 10 20 30 40 50 60

P (atm)

Neutron Counts

$\text{Neutron Energy Loss (meV)}$

$\text{J. Alloys Comp. in press (2007)}$
Technical Accomplishment

Quaternary System: Na-Mg-Si-H

NaH + MgH₂ → NaMgH₃ (350°C, 50bar H₂)

- MgH₂/Si system is hard to hydride
- NaH/Si system reversibly absorbs H₂
- NaH/MgH₂ forms a NaMgH₃ phase

So, we tried MgH₂/NaH/Si system

Desorption: 350°C evac.
NaH + 2MgH₂ + 2Si → Mg₂Si + NaSi

Hydrogenation: 350°C 50 atm
NaSi + Mg₂Si + H₂
→ (1-x)Mg₂Si + (1-x)NaH + Si + xNaMgH₃

Mg₂Si can partially absorb H₂ through the formation of NaMgH₃

Reversible hydrogenation/dehydrogenation
NaMgH₃ ↔ Na + Mg + 3/H₂ (350°C)
For $\text{Ca}(\text{BH}_4)_2$ synthesized at Sandia, the neutron vibrational spectrum is in agreement with first-principles phonon calculations based on the published $\text{Ca}(\text{BH}_4)_2$ structure.
Destabilization of LiBH₄ with ScH₂ and CaH₂

• 2LiBH₄/ScH₂

Isotherm proposed: \[2\text{LiBH}_4 + \text{ScH}_2 \rightarrow \text{ScB}_2 + 2\text{LiH} + 4\text{H}_2 \uparrow \] (8.9 wt%)

• Moderate desorption (~6 h to complete)
 but: 1. dehydrogenation only above 380°C
 2. no noticeable absorption observed during the rehydrogenation step

• 6LiBH₄/CaH₂

Isotherm proposed: \[6\text{LiBH}_4 + \text{CaH}_2 \rightarrow \text{CaB}_6 + 6\text{LiH} + 10\text{H}_2 \uparrow \] (11.7 wt%)

• Moderate desorption (~2-3 h to complete)
• Complete rehydrogenation can be achieved at 380°C / 50 bar H₂
 but: 1. dehydrogenation only above 380°C
 2. relatively slow hydrogenation kinetics (1 day to complete)

Subsequent results from other partners suggest that the dehydrogenation of the borates leads to elemental boron, not borides.
Technical Accomplishment

Calphad Computations

- Developing Calphad database for H-Li-Mg-Ca-B-Si with thermodynamic descriptions of the constituent subsystems
 - 15 binary total: 11 full descriptions available, 3 provisional in development, 1 under development
 - 20 ternary total: 2 full descriptions available, 1 partial description available
- Challenge: lack of available experimental data
 - Incorporate data from ab initio calculations by MHCoE partners

Results: Quaternary System: Mg-Li-B-H

2 LiBH$_4$ + MgH$_2$
4 LiBH$_4$ + MgH$_2$
7 LiBH$_4$ + MgH$_2$

2 LiBH$_4$ + MgH$_2$ is the most promising composition with a large amount of available hydrogen (11.5%) at the lowest reaction temperature (188°C).

We are currently in the process of expanding to include N in the overall database as well as to investigate Na-K-B-H phases.
Future Work

Remainder of FY 2007:

- Scale up for higher hydrogenation pressure capability (<1000 atm) and use to investigate new ternary and quaternary systems via neutron methods.
- Continue thin-film characterizations using neutron reflectometry.
- Continue efforts to synthesize 11B labelled hydrogen-storage materials.
- Complete thermodynamic assessments for systems with provisional descriptions (Li-B intermediate phases).
- Include descriptions for ternary and quaternary hydrides as data become available.
- Identify systems with MHCoE partners for future neutron scattering studies and Calphad database development.

FY 2008:

- Perform neutron scattering characterizations of new materials in conjunction with the needs of the other partners, emphasizing materials synthesized at high pressures.
- Continue to expand Calphad database (evaluate literature for data, identify data needs and systems with MHCoE partners for future database development).
- Initiate feasibility studies of unique neutron imaging of H distribution and transport in storage beds for candidate materials.
Neutron methods and Calphad computations provided crucial, non-destructive characterization and predictive tools for the Metal-Hydride Center of Excellence.

• Combined neutron and first-principles studies reveal novel ternary structures and H bonding for hydrided Li and Ca alloyed with Si (Ge). Nonetheless, the formation of these structures decreases the maximum H uptake expected for these destabilized materials. Also the H desorption temperature is still too high for practical applications.

• Hydrogen-induced amorphization (HIA) observed for Ca$_2$Si suggests a possible pathway for developing new hydride materials with improved absorption kinetics and warrants further examination.

• Attempts to make Mg$_2$Si more hydridable by alloying with Ca$_2$Si or NaSi were only partially successful. Although the CaMgSi alloy that routinely formed using Ca$_2$Si could not be hydrided under normal conditions, some of the Mg$_2$Si hydrided when NaSi was present to form NaMgH$_3$. This suggests that proper doping of Mg$_2$Si with additional elements can render the Mg component more reactive.

• Neutron methods confirm the formation of Ca(BH$_4$)$_2$ from the high-pressure hydrogenation of CaH$_2$ and CaB$_6$. These high-pressure syntheses may provide an alternate means of incorporating neutron-transparent 11B into various borohydrides to enable better neutron measurements.

• Hydrogen cycling measurements of promising destabilizing combinations of LiBH$_4$ with ScH$_2$ and CaH$_2$ indicate that they may be hindered by the formation of elemental boron during dehydrogenation.

• A Calphad database for H-Li-Mg-Ca-B-Si-N with thermodynamic descriptions of the constituent subsystems is being developed from binary data from the literature and *ab initio* calculations. So far, 2 LiBH$_4$ + MgH$_2$ is the most promising composition with respect to hydrogen availability and reaction temperature.