Systems Analysis Session

Fred Joseck
Technology Analyst

2008 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

June 10, 2008
U.S. Department of Energy
DOE Hydrogen Program

Introduction

What Questions Should Analysis and Models Answer?

Analysis Progression

<table>
<thead>
<tr>
<th>Initial Questions and Problems to Address with Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What are the key technology drivers?</td>
</tr>
<tr>
<td>• What is the hydrogen cost of the technologies?</td>
</tr>
<tr>
<td>• Where do we focus our research i.e. which technology/ies and what area of the technologies?</td>
</tr>
<tr>
<td>• What are the resource requirements/limitations?</td>
</tr>
<tr>
<td>• What are the hydrogen quality requirements and cost implications?</td>
</tr>
<tr>
<td>• What technologies will be needed to meet the hydrogen quality specifications?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrating Questions and Problems to Address with Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Which portfolio of technologies will best fit and where (cost, resource availability, infrastructure availability, etc.)</td>
</tr>
<tr>
<td>• How will the infrastructure evolve?</td>
</tr>
<tr>
<td>• What are the infrastructure requirements in cost?</td>
</tr>
<tr>
<td>• What will be the impacts on petroleum use and greenhouse gas emissions as the infrastructure and technologies are introduced?</td>
</tr>
<tr>
<td>• What and where are the infrastructure constraints to meet the technology requirements?</td>
</tr>
<tr>
<td>• Does the vehicle need to be built first or is a fueling infrastructure required first (how to manage the "chicken and egg" issue)?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long Term Questions and Problems to Address with Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What policies will be needed to enable hydrogen production, delivery and vehicles?</td>
</tr>
<tr>
<td>• Which policies will be more effective for vehicle introduction and for hydrogen/infrastructure introduction?</td>
</tr>
<tr>
<td>• What is the impact of switching from a petroleum based transportation fuel to a hydrogen based fuel?</td>
</tr>
</tbody>
</table>
Analysis Strategy and Domains

Technical Analysis
- Resource, technical feasibility, environmental, delivery, and infrastructure development analysis
- Assists in defining the appropriate slate of projects for the hydrogen research portfolio, and increasing the effectiveness of research projects
 - Example models:
 - PSAT
 - GREET
 - HyDS
 - Macro-System Model
 - HYPRO

Cost Analysis
- Analysis to assess the economic feasibility of various infrastructure and vehicle processes
- Assists in choosing research paths which offer the best possibilities of competitive costs for hydrogen production, delivery, vehicle configurations, etc.
 - Example models:
 - H2A
 - TIAx Logistics Model

Market/Benefits Analysis
- Analysis to estimate the benefits of its portfolio of R&D and deployment programs and to perform various types of policy analyses
- Examination of the interactions of hydrogen production and consumption with the rest of the energy system
 - Example models:
 - NEMS
 - MARKAL
 - HyTrans
 - VISION
Challenges

• Establish consistent data, assumptions and guidelines for analysis tasks

• Understand behaviors and drivers of the fuel and vehicle markets

• Coordinate and integrate analysis resources and capabilities across analytical domain

• Understand vehicle, fuel and socio-economic policy impacts

• Establish and develop an integrated portfolio of models and tools
Analysis Portfolio

- **Programmatic analysis**
 - Risk analysis of Hydrogen Program targets and goals
 - Petroleum and CO₂ reduction benefits
 - Analysis of integrating stationary and transportation fuel cells
 - Program benefits for program-related product commercialization

- **Program element analysis**
 - Hydrogen production and delivery pathway analysis
 - Platinum recycling impact on fuel cell cost

- **Environmental Analysis**
 - Atmospheric impacts of hydrogen
 - Well-to-Wheels analysis of greenhouse gas (GHG) emissions

- **Policy Analysis**
 - CO₂ analysis
 - Fuel, infrastructure and vehicle subsidy evaluation

- **Early Market Analysis**
 - Cost and GHG benefit analysis of early market applications
Systems Analysis Progress

<table>
<thead>
<tr>
<th>Year</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>✔ Systems Analysis function established</td>
<td>✔ Established process for developing hydrogen cost target</td>
<td>✔ Well-to-Wheels analysis process established</td>
<td>✔ WTW analysis completed</td>
<td>✔ Preliminary water analysis analysis completed</td>
</tr>
<tr>
<td>2005</td>
<td>✔ Revised hydrogen cost target to $2.00-3.00/gge</td>
<td>✔ H2A Production Model issued</td>
<td>✔ Systems Analysis Plan issued</td>
<td>✔ Macro-System Model test version completed and validated</td>
<td>✔ Macro-System Model completed and issued</td>
</tr>
<tr>
<td></td>
<td>✔ Identified analytical gaps and “missing pieces”</td>
<td>✔ HyDS model completed</td>
<td>✔ Cross-Cut team established</td>
<td>✔ Scenario Analysis for Transition completed</td>
<td>✔ H2A Production Model revised and issued</td>
</tr>
<tr>
<td>2006</td>
<td>✔ Hydrogen Analysis Resource Center issued</td>
<td>✔ Systems Analysis Plan issued</td>
<td>✔ Resource and infrastructure analysis started</td>
<td>✔ CO2 policy analysis completed</td>
<td>✔ Early market analysis</td>
</tr>
<tr>
<td></td>
<td>✔ Well-to-Wheels analysis process established</td>
<td>✔ HyDS model completed</td>
<td>✔ Pt recycling cost analysis completed</td>
<td>✔ Hydrogen quality analysis of impact on production and fuel cell completed</td>
<td>✔ Hydrogen quality analysis of impact on production and fuel cell completed</td>
</tr>
</tbody>
</table>
2008 Accomplishments/Results

Modeling and Model Development

Macro-System Model

Completed first version of the model

- Completed peer review of the model.
- Analyzed the hydrogen cost and greenhouse gas emissions for 7 hydrogen pathways
- Utilized model for EU/US model comparison

H2A Production Model Update

Completed peer reviewed revision of H2A model

- Added scaling feature for various production rates
- Added cost for CO2 sequestration
 - Capital cost
 - Pipeline cost
 - Cost of CO2 injection
CO₂ Analysis

- Preliminary sensitivity analysis of hydrogen pathways show CO₂ reduction benefits of 1.7 to 2.3 Giga tons of CO₂/yr

Platinum Recycling Cost Analysis

- Currently, platinum only regarded as cost input for fuel cell analysis

Hydrogen Quality Analysis

- Preliminary analysis shows the hydrogen production cost increases ~$0.20-0.40/gge to meet hydrogen quality specifications for the fuel cell

- Preliminary analysis determined hydrogen cost to achieve quality to optimize fuel cell performance.

Source: Brookhaven National Laboratory MARKAL model
2008 Accomplishments/Results

Analysis

Resource Analysis

Developed “Well-to-Wheels” analysis approach for water

• Utilized for hydrogen pathways and conventional fuel pathways analysis
• Used as a screening tool to create a Water Resource Analysis project with LLNL

![Water Use for Technologies per Mile](image)

Water Use per Mile

- Conventional
- Hydrogen Pathways
- Fuel Pathways

- Water requirements for hydrogen based on H2A model.
- Used ANL Water report for analysis data.
- Distributed electrolysis assumes electricity is coming from the grid.

Early Market Analysis

- Preliminary Well-to-Wheels analysis for GHG emissions for early market shows H₂ fork lifts lower than fossil fuel pathways

![Fuel-cell Forklift: (Source: Toyota)](image)

Fuel Cycle GHGs Emissions For Forklift Technologies

- H₂ Fuel Cells
- Battery
- ICEs

Source: ANL GREET model
Systems Analysis Partners

- Office of Planning, Budget & Analysis (PBA)
- Fossil Energy
 - Nuclear Energy
 - Other EERE Programs
- H2 Program Elements
- Other Agencies
- National Laboratories
- Systems Integration
- Fuels Pathways Integration Tech Team (FPITT)

(Paths and labels for collaboration and analysis)
Systems Analysis
Session Schedule

Analysis Sessions will be held EVERYDAY!

2008 DOE HYDROGEN PROGRAM MERIT REVIEW AND PEER EVALUATION MEETING BLOCK SCHEDULE

<table>
<thead>
<tr>
<th>Session Salon</th>
<th>Monday June 9</th>
<th>Tuesday June 10</th>
<th>Wednesday June 11</th>
<th>Thursday June 12</th>
<th>Friday June 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch (Awards)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch (EC Address)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plenary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plenary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer Orientation Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- 15 minute talk, starts 15 minutes after listed time.
- Raffaelli Liberali, Director for Non-Nuclear Energy in the Directorate General for Research, Technology and Development (DG-RTD) of the European Commission
Tuesday, June 10
Start: 8:45 AM Focus: Modeling and Fuel Cell Vehicle in Transportation

- Systems Analysis Introduction
- AN 1: HyTrans Model: Analyzing the Transition to Hydrogen-Powered Transportation
 by David Greene
- AN 2: Fuel-Cycle Analysis of Hydrogen-Powered Fuel Cell Systems with the GREET Model
 by Michael Wang
- AN 3: Discrete Choice Analysis of Consumer Preferences for Refueling Availability
 by Marc Meliana

Wednesday, June 11
Start: 9:00 AM Focus: Modeling and Analysis of Hydrogen Production

- AN 4: Macro-System Model
 by Mark Ruth
- AN 5: Analysis of the Hydrogen Production and Delivery Infrastructure as a Complex Adaptive
 System by George Tolley
- AN 6: Updates to the H2A Hydrogen Production Discounted Cash Flow Model (H2A version 2.0)
 by Darlene Steward
Thursday, June 12
Start: 9:00 AM Focus: Hydrogen Resource Requirements and Infrastructure
AN 7: H2-W The Production Value of Water in a Hydrogen Economy
 by Richard White
AN 8: HyDRA: Hydrogen Demand and Resource Analysis
 by Mitt Sparks
AN 9: Lessons Learned for Fueling Infrastructure
 by Marc Meliana

Friday, June 13
Start: 9:00 AM Focus: Fuel Cell Analysis and Environmental Impacts of Hydrogen
AN 10: Hydrogen and Fuel Cell Analysis: Lessons Learned from Stationary Power Generation
 by Mr. Dogan
AN 12: Hydrogen Quality Issues for Fuel Cell Vehicles
 by Romesh Kumar
AN 13: Update on Platinum Availability and Assessment of Platinum Leasing Strategies for Fuel Cell
 Vehicles by Matt Kromer
AN 14: Evaluation of the Potential Large-Scale Use and Production of Hydrogen in Energy and
 Transportation Applications by Don Wuebbles
AN 15: Potential Environmental Impacts of Hydrogen- Based Transportation and Power Systems
 by Tom Grieb
Thank You
For More Information
Systems Analysis

Fred Joseck
DOE Hydrogen Program
(202) 586-7932
fred.joseck@ee.doe.gov

Tien Nguyen
DOE Hydrogen Program
(202) 586-7387
Tien.nguyen@ee.doe.gov

Jill Gruber
DOE Golden Field Office
303-586-4961
Jill.gruber@go.doe.gov

Reginald Tyler
DOE Golden Field Office
303-275-4929
Reginald.tyler@go.doe.gov

David Peterson
DOE Golden Field Office
303-275-4956
David.peterson@go.doe.gov