Lead Research and Development Activity for DOE’s High Temperature, Low Relative Humidity Membrane Program

James Fenton
University of Central Florida-FSEC
June 11, 2008

Project ID # FC 15

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

- April 1, 2006
- March 31, 2011
- 40% Complete

Barriers

- Barriers addressed
 - D. High Conductivity at Low RH & High T
 - C. High MEA Performance at Low RH & High T
 - A. Membrane and MEA durability

- Targets
 - Conductivity = 0.07 S/cm @ 80% relative humidity (RH) at room temp using alternate material – 3Q Yr 2 milestone
 - Conductivity >0.1 S/cm @ 50% RH at 120 °C – 3Q Yr 3 Go/No Go

Budget

- Total project funding
 - DOE share - $2,500K
 - Contractor share - $625K

- Funding received in FY07 - $550K
- Funding for FY08 - $585K

Partners

- BekkTech LLC – In–plane conductivity protocols
- Scribner Associates – Through-plane conductivity protocols
- Project management
Objectives

- New polymeric electrolyte/phosphotungstic acid membranes
- Development of standardized characterization methodologies
 - Conductivity $f(RH, T, \text{Prep. Procedure})$ [Through- & In-Plane]
 - Characterize mechanical, mass transport and surface properties of membranes
 - Evaluate fuel cell performance and predict durability of membranes and MEAs fabricated from other eleven HT Low RH Membrane Programs
- Provide HTMWG members with standardized methodologies
- Organize HTMWG biannual meetings
<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept-07</td>
<td>Complete analysis of in-plane and through-plane conductivity of commercial membranes.</td>
</tr>
<tr>
<td>Dec-07</td>
<td>Milestone: Complete conductivity characterization of first three membranes from Topic 1 awardees.</td>
</tr>
<tr>
<td>Dec-07</td>
<td>Milestone: Demonstrate conductivity = 0.07 S/cm @ 80% relative humidity (RH) at room temp using alternate material</td>
</tr>
<tr>
<td>Jun-08</td>
<td>Milestone: Establish MEA test protocol</td>
</tr>
<tr>
<td>Sept-08</td>
<td>Milestone: Complete manufacturing of first MEA from working group members</td>
</tr>
<tr>
<td>Dec-08</td>
<td>Go/No-Go Decision: Demonstrate conductivity of 0.1 S/cm, 50% RH, 120 °C</td>
</tr>
</tbody>
</table>
Approach

Improve Conductivity:

Task 1. FSEC develops non-Nafion® based Poly[perfluorosulfonic acid] -phosphotungstic acid composite membrane and membrane electrode assembly (MEA) fabrication (PFSA-PTA)

Task 2. FSEC develops sulfonated poly(ether ketone ketone) or sulfonated poly(ether ether ketone) - Phosphotungstic Acid Composite Membrane and MEA Fabrication (SPEEK-PTA)

Improve FC Performance:

Task 5. Characterize performance of MEAs for Topic 1 members

Task 6. Characterize membrane and MEA durability for Topic 1 members

Standardize Testing

Task 3. In-Plane conductivity measurements by partner

Task 4. Through-Plane conductivity measurements by partner

Task 7. Meetings and Activities of HTMWG
Technical Accomplishments/Progress/Results

• Conductivity
• Performance
• Durability
 – Chemical
 – Mechanical
In-Plane Conductivity Measurements

Conductivity ≥0.1 S/cm @ 25 - 50% RH at 120 °C – 3Q Yr 3
Go/No Go

3QYr 2 Milestone - 0.07S/cm @ 80% RH at 30 °C

Current Status

Gap

Conductivity (mS/cm)

Relative Humidity (%RH)

- NRE-212 (3-20-07) 120C
- NRE-212 (3-20-07) 80C
- NRE-212 (3-20-07) 30C
• Samples tested at 30 °C, 80% RH ~100 kPa at BekkTech as of April 24, 2008
In-Plane vs. Through-Plane Conductivity
(milestone)

NRE 211 at 30, 80, & 120 °C
Also Tested NRE-212, NE-1135 & N 117

<table>
<thead>
<tr>
<th>Relative Humidity (%)</th>
<th>Conductivity (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>1000</td>
</tr>
</tbody>
</table>

Graph showing the conductivity of NRE 211 at different temperatures and relative humidities.
FSEC-3 Meets Conductivity Milestone!
(PFSA-PTA)

Comparing to Nafion® at 30 °C 100 kPa

- FSEC-3 (2-26-08) 30°C
- NRE-212 (3-20-07) 30°C
- Sample Result at 80% RH, 30°C: 79.7 mS/cm
- DOE Milestone at 80% RH, 30°C: 70 mS/cm
FSEC-3 Tested at 30 °C, 80 °C, 120 °C (PFSA-PTA)
Conductivity of FSEC-SLR3 (SPEEK-PTA)

Comparing to Nafion® at 30 °C 100 kPa

- SLR-3 (4-10-08) 30C
- NRE-212 (3-20-07) 30C
- Sample Result at 80% RH, 30C: 35.7 mS/cm
- DOE Milestone at 80% RH, 30C: 70 mS/cm
Progress Toward 120 °C Go/No Go

Meet 30 °C, 80% RH Milestone

Status Toward 120 °C, 50% RH Go/No Go
Performance

Jun-08 Milestone: Establish MEA test protocol

Sept-08 Milestone: Complete manufacturing of first MEA from working group members
MEA Test Apparatus

<table>
<thead>
<tr>
<th>T_{cell}</th>
<th>$T_{cathode humidifier}$</th>
<th>R. H.</th>
<th>P_{total}</th>
<th>Inlet P_{H2O}</th>
<th>Inlet P_{O2} in Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°C</td>
<td>%</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
</tr>
<tr>
<td>80</td>
<td>73</td>
<td>75</td>
<td>101</td>
<td>35</td>
<td>13.86</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>70</td>
<td>101</td>
<td>70</td>
<td>6.51</td>
</tr>
<tr>
<td>100</td>
<td>65</td>
<td>25</td>
<td>150</td>
<td>25</td>
<td>26.25</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>35</td>
<td>101</td>
<td>70</td>
<td>6.51</td>
</tr>
<tr>
<td>120</td>
<td>82</td>
<td>25</td>
<td>150</td>
<td>51</td>
<td>20.79</td>
</tr>
<tr>
<td>120</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>101</td>
<td>10.29</td>
</tr>
</tbody>
</table>
Electrochemical Testing

Cell Performance with FSEC-3

80 °C Air and O₂ Performance FSEC-3

- Voltage, Oxygen
- Voltage, Air
- Resistance, Oxygen
- Resistance, Air

Cell Performance with Nafion® 112

80 °C Air and O₂ Performance Nafion 112

- Voltage, Oxygen
- Voltage, Air
- Resistance, Oxygen
- Resistance, Air

LSV → H₂ Crossover

CV → ECA

\[
ECA = \frac{(\text{Area under peak})}{(\text{scan rate}) \times (210 \mu C/cm² - \text{Pt}) \times (\text{Pt loading})}
\]
In Situ Investigation of MEA Degradation

- **MEAs investigated:**
 - Nafion® and FSEC-1 and FSEC-3

- **Tested MEAs under different degradation conditions:**
 - 90 °C; 35% RH; OCV; 100 hr

- **Degradation evaluated in several ways:**
 - Electrochemical Pre- and Post-testing
 - H_2 crossover, ECA, polarization, resistance
 - Material testing before and after degradation test
 - mechanical strength, materials science
 - During the test
 - fluoride emission rate, voltage monitored
Fluoride Emission Rate

90 °C; 35% RH; OCV; 100 hr

FER (μmol/cm² h)

N112 Anode
N112 Cathode
FSEC1 Anode
FSEC1 Cathode
FSEC3 Anode
FSEC3 Cathode

90°C 30% RH, OCV

Time (hr)
Rationale for the Investigation of Membrane/MEA Mechanical Degradation

• Mechanical properties degradation: phenomena and relevance
 – The beginning-of-life (BOL) mechanical properties of membranes are adequate, typically
 – Mechanical properties rapidly decay as a result of accumulated chemical (e.g., load cycling + OCV) and mechanical effects (e.g., RH cycling)
 – Fracture of mechanically weakened membrane can be the life-limiting failure mode for PEM devices

• It is important to
 – quantify the membrane mechanical robustness while optimizing other properties of high temperature membrane
 – further understand the underlying mechanisms that are responsible for the mechanical decay
Membrane/MEA mechanical degradation: modulus of toughness

Modulus of toughness = Energy per unit volume necessary to rupture the material, Joule/m³ or milli-Joule/mm³

N112 control	N112 after OCV	FSEC1 control	FSEC1 after OCV
Modulus of Toughness (mJ/mm³) | 21.757 | 16.446 | 26.554 | 23.159

X. Huang, W. Yoon, M. Rodgers
Future Work

• Complete characterization of HTMWG membranes
• Establish MEA test protocol (milestone)
• Manufacture first MEA from HTMWG membrane (milestone)
• Demonstrate conductivity of 0.1 S/cm, 50% RH, 120 °C (Go/No Go)
8-Cell MEA Durability Test System

- Simultaneous, independent operation of 8 cells
- Fully automatic – 24/7 operation
- Common RH system
- Adjustable cell temperature and reactant flow
- Individual cell diagnostics
- Manual over ride
- Individual cell replacement
Summary

• **Relevance** - A new membrane material for PEM Fuel Cells with sufficiently improved conductivity at high temperature (120 °C) and low RH is required for the transportation F/C market. A new method for measuring membrane conductivities with sufficient accuracy and reliability is required for DOE program decisions.

• **Approach** - Develop and demonstrate new materials for membranes, and define and apply new tools and procedures for membrane conductivity testing.

• **Tech. Accomplishments /Progress**
 – FSEC-3 exceeds conductivity goal, demonstrating conductivity >0.07 mS/cm at 80% RH and 30 °C.
 – Manufactured MEAs from Nafion® and FSEC membranes
 – Performance and durability testing of Nafion® and FSEC MEAs
 – Much reduced FER with FSEC membranes
 – Provided independent conductivity measurements for HTMWG members

• **Collaborations**
 – Active partnership with BekkTech LLC and Scribner Associates
 – Working closely with HTMWG members to provide accurate data under standardized conditions
 – Provided protocol to HTMWG members
 – Demonstrated Agreement between through-plane and in-plane conductivity measurements