NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

Peter Pintauro1 and Patrick T. Mather2

1Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106

2Syracuse Biomaterials Institute, Biomedical and Chemical Engineering Dept., Syracuse University, Syracuse, NY 13244,

June 2008

Project ID #FC20

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Start date 4/15/2006
• End date 4/15/2011
• Percent complete 40%

Barriers
• High proton conductivity membranes at high T and low RH.
• Chemically stable membranes with good mechanical properties.
• Membranes with low gas permeability.

Budget
• Total project funding
 – DOE $1,455,257
 – Contractor (CWRU) $481,465
• Funding received in FY07, $300,000
• Funding for FY08, $350,000

Interactions
Eric Fossum
Dept. of Chemistry
Wright State University,
Dayton, OH
Project Objective

To fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions.

2007-08 Project Goals

Fabricate membranes with the following properties:
1. 0.07 S/cm proton conductivity at 30°C and 80% relative humidity.
2. Good mechanical properties.
3. Low gas permeability.

Identify a roadmap to achieve high conductivities at lower humidity and higher temperatures (Year 3 milestone of 0.1 S/cm at 50% RH and 120°C).
Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov-07</td>
<td>Milestone: Fabricated a series of nanofiber network cation-exchange membranes with different volume fractions of interconnected fibers (from sulfonated poly(arylene ether sulfone)) in an inert matrix. Measure proton conductivity in water and water swelling (at 25°C), tensile strength, and gas (oxygen) permeability.</td>
</tr>
<tr>
<td>March-08</td>
<td>Milestone: Added varying amounts of sulfonated POSS (polyhedral oligomeric silsesquioxanes) to sulfonated poly(arylene ether sulfone) and electrospun nanofiber mats. Converted the mats into defect-free nanofiber network membranes. Measured proton conductivity at 30°C and 80% RH.</td>
</tr>
<tr>
<td>April-08</td>
<td>Go/No-Go Decision: Achieved a proton conductivity of 0.7 S/cm at 30°C and 80% RH, for a nanofiber network membrane containing proton conducting fibers (sPAES with sulfonated POSS) and Norland Optical Adhesive as the inert matrix.</td>
</tr>
</tbody>
</table>
Approach - Nanofiber Network Membranes

The Concept: Fabricate a phase separated membrane composed of ionomeric nanofibers embedded in a uncharged and inert polymer matrix. Artificially create the nanomorphology desired in a copolymer.

1- Decouple mechanical and proton-conducting functions of the membrane

2- Remove percolative problems of classical blended and composite systems

3- Control independently both the size and the loading of the proton-conducting phase

4- Use nano-fibers/capillaries and inorganic particles to exploit interfacial effects, capillary condensation and other nano-phenomena
Plan and Approach - Tasks

Red (done) – Green (ongoing) – Blue (upcoming)

> **Task 1 Sulfonated Polymer Synthesis**
 - Different polymer IECs
 - Polymer crosslinking studies
 - Polymer characterizations

> **Task 2 Electrospinning Process Development**
 - Creation of a fiber mat (with and without sulfonated POSS)
 - Fiber Compaction and Welding Studies

> **Task 3 Matrix Polymer Identification and Membrane Fabrication**
 - Identify an inert (uncharged) polymer
 - Develop method for adding polymer to the fiber mat

> **Task 4 Membrane Characterization**
 - Equilibrium water swelling as a function of T and RH
 - Preliminary through-plane and in-plane conductivity at different T and RH
 - Thermomechanical analysis
 - Mechanical properties
 - Oxygen permeability
 - SEM and TEM micrographs of membrane cross sections
 - Thermal analysis (DSC and TGA) of the sulfonated and non-sulfonated polymers

> **Tasks 5 Membrane Composition/Structure Optimization**
Membrane Fabrication Steps

1. Synthesize sulfonated poly(arylene ether sulfone) (sPAES) with a high ion-exchange capacity (2.1-2.6 mmol/g) and high molecular weight.

2. Electrospun nanofiber mats (using DMAc and 2-butoxyethanol as the solvent). Use a rotating and oscillating drum as the fiber collector (to produce a large mat of uniform thickness and fiber volume fraction). Typical fiber density of the mats was 0.20.

3. Densify the fiber mats to increase fiber volume fraction. Use 3 minute compaction (with no heat). Pressure vs. fiber volume fraction relationship was determined. Fiber volume fraction can be controlled from 24-80%.

4. Weld intersecting fibers to make a 3-D fiber network. Expose densified mat to organic solvent in a sealed chamber (DMF or 2-butoxyethanol).

5. Fill the voids between fibers with NOA63 and UV cure.
Nanofiber Composite Membranes – Fabricated Structures

2.5 mmol/g IEC sPAES fibers

Electrospin
14 kV, 8 cm SCD, 1600 rpm, 0.04 ml/h. Fiber density = 0.20

Compact
fiber density = 0.30 at 700 psi;
fiber density = 0.64 at 13,000 psi for 3 min

Create interfiber welds
expose mat to DMF vapor 7 - 18 minutes at 25°C

Impregnate the densified and welded mat with a solvent-less, inert, and uncharged polymer (Norland Optical Adhesive, NOA63, photopolymerizable thiol-ene based resin)
Nanofiber Composite Membranes – The Final Membrane

Embed the welded fibers in Norland Optical Adhesive (NOA63) – a solvent-less polyurethane photopolymer – and then UV cure.

![Image](image1.png)

![Image](image2.png)

![Image](image3.png)

![Graph](graph.png)

- Proton conductivity (S/cm)
- Water uptake (g H₂O / g dry memb.)

Fiber Volume Fraction

Homogeneous NOA film

Homogeneous sPAES film
Nanofiber Network Membranes

Gas Permeation and Mechanical Property Data

<table>
<thead>
<tr>
<th>Tested sample</th>
<th>O_2 permeability (Barrer)</th>
<th>Young's Modulu’s<sup>a</sup> (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous solution cast film of sulfonated poly(arylene ether sulfone) - 2.5 mmol/g</td>
<td>0.53</td>
<td>409</td>
</tr>
<tr>
<td>UV cured NOA63 film</td>
<td>0.038</td>
<td>960</td>
</tr>
<tr>
<td>Nanofiber composite membrane of sulfonated poly(arylene ether sulfone) fibers impregnated with NOA63</td>
<td>0.18<sup>b</sup></td>
<td>528<sup>c</sup></td>
</tr>
<tr>
<td>Nafion ® 117</td>
<td>9.4</td>
<td>176</td>
</tr>
</tbody>
</table>

^a determined from Instron tests at room temperature. All samples were dried in air for 48 hrs

^b 60% fiber volume fraction

^c 80% fiber volume fraction
High Conductivity Nanofiber Composite Membranes

Blends of sulfonated poly(arylene ether sulfone) and sulfonated POSS (polyhedral oligomeric silsesquioxanes) were electrospun

Sulfonated Octaphenyl Polyhedral Oligomeric Silsesquioxanes (SPOSS)

Cage Structure & Hydrophilic Acid Groups

Increase Water Retention and increase in the number of acid groups

High conductivity at low humidity
SEM of sPAES/sPOSS Electrospun Mats

40 wt% SPOSS+SPAES52

SPAES52

300-500 nm fiber diameter.
Proton Conductivity of sPAES/sPOSS Nanofiber Composite Membranes – Our Results

70-75% fiber volume fraction; 50-70 μm membrane thickness, 2.1 mmol/g IEC

In-plane conductivity measured in a Bekktech cell in a controlled humidity/temperature oven (30°C and 80% relative humidity)

<table>
<thead>
<tr>
<th>Sample</th>
<th>σ (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% SPOSS + SPAES52 from 2-butoxyethanol</td>
<td>0.094</td>
</tr>
<tr>
<td>35% SPOSS + SPAES52 from 2-butoxyethanol</td>
<td>0.084</td>
</tr>
<tr>
<td>25% SPOSS + SPAES60 from 2-butoxyethanol</td>
<td>0.069</td>
</tr>
<tr>
<td>SPAES52 from 2-butoxyethanol (2.1 mmol/g IEC)</td>
<td>0.022</td>
</tr>
<tr>
<td>SPAES60 from 2-butoxyethanol (2.6 mmol/g IEC)</td>
<td>0.030</td>
</tr>
<tr>
<td>Nafion 212</td>
<td>0.038</td>
</tr>
</tbody>
</table>
Proton Conductivity of sPAES/sPOSS Nanofiber Composite Membranes – Bekktech Results

4 Electrode Conductivity

Conductivity (mS/cm) vs. Relative Humidity (%RH)

- Case 52S35N (4-10-08) 120C
- Case 52S35N (4-9-08) 80C
- Case 52S35N (4-9-08) 30C

Conductivity Calculated based on dry dimensions and no swelling.
Summary of 2007-08 Work

Relevance: Seeking novel high performance membrane materials for high temperature and low relative humidity PEM fuel cell operation.

Approach: Nanofiber network membranes were fabricated from sulfonated poly(arylene ether sulfone) with/without sulfonated POSS. The inert matrix polymer for embedding the fibers was NOA63.

Technical Accomplishments and Progress: Demonstrated 0.07 S/cm proton conductivity at 30°C and 80% RH. Nanofiber network membranes exhibited good mechanical properties with low oxygen permeability.

Technology Transfer/Collaborations: Actively seeking an industrial collaborator. Presentations, publications, and a university invention disclosure.

Proposed Future Research: Increase membrane conductivity at low humidity and high temperature, without the loss of mechanical properties.

Peter Pintauro
216-368-4150
pnp3@case.edu

Project ID #FC20
<table>
<thead>
<tr>
<th>Date</th>
<th>Membrane Material</th>
<th>Proton Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-07</td>
<td>Sulfonated poly(ether ether ketone) and NOA63 – 1.6 mmol/g IEC, fiber vol. fraction = 0.80</td>
<td>0.037 (in water at 25°C)</td>
</tr>
<tr>
<td>Nov. 2007</td>
<td>Sulfonated poly(arylene ether sulfone) and NOA63 – 2.5 mmol/g IEC, fiber vol. fraction = 0.77</td>
<td>0.11 (in water at 25°C)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Sulfonated poly(arylene ether sulfone) with sPOSS and NOA63 – 2.1 mmol/g IEC, 40 wt% sPOSS, fiber vol. fraction = 0.70-0.75</td>
<td>0.07 (30°C and 80% RH) 0.17 (80°C and 80% RH) 0.062 (80°C and 60% RH)</td>
</tr>
</tbody>
</table>

DOE Year 2 milestone target (0.07 S/cm at 30°C and 80% RH) was met
Future Work 2008-09

• Increase the proton conductivity of electrospun mats at low RH
 • Use a higher IEC polysulfone polymer to create the nanofibers
 • Increase the sPOSS loading in the nanofibers (> 40 wt%)
 • Use POSS with phosphonic acid functionalities
 • Investigate the addition of poly(phenylene disulfonic acid) to the nanofibers – from M.Litt’s project
 • Add zirconium phosphate sulfophenyl phosphonate (high IEC) to the nanofibers for low RH/high T (> 100°C) conductivity

• Stabilize the nanofiber morphology
 • Crosslinking of high IEC sPAES (creation of sulfone or biphenyl/disulfone bridges)
 • Covalent-bond stabilization of sPOSS

• Replace NOA63 for better chemical/thermal stability and better strength at high T
 • Acid-resistant epoxy (thermally cured EP42-2LV from Master Bond Inc.)
 • Polymer melt impregnation

• Upcoming Milestone: 0.1 S/cm at 120°C and 50% RH