Develop a durable steam reforming module for stationary applications:
- Design & Test a 1,000 scfh H2 (2.4kg/hr) SR module
- Mitigate product life-cycle cost (capital & O&M over 5 year lifetime)
- Achieve durability through accelerated aging & profiling
- Achieve 3+ party validation (10,000 scfh SR subsystem)
- Accelerate technology development (303 to 2,000 scfh: 1.2 to 7 kg/hr)

Summary Through FY 2007 FY 2008 Expected
- Total produced as of 4/14/08
- >99.995% purity, <1ppm CO
- >99.9999% purity, <1ppm CO
- Fuel Processor Validation
- Fuel Processor performance is to be validated at Nuvera by Aspen/Superstar Lab.
- Fuel Processor performance is to be validated at Nuvera by Aspen/Superstar Lab.
- Fuel Processor validation (Awards: DE-FC36-02AL67618, DE-FC26-05FT42508)

Future Work
- Conclude accelerated FP testing for investigation of creep - fatigue interaction and investigate impact of cycling on expected FP life
- Complete validation of Co-flow and Counter-flow reformer configurations and assess trade-offs between durability and efficiency for minimization of the hydrogen generator life cycle cost
- Complete a toolbox for design of next-generation system
- Assist ANL in validation of performance of the 1000 BFW system
- Demonstrate fuel processor durability with 5000 hrs and 250 cycles
- Evaluate system concepts for design of scalable, high efficiency fuel processors
- Complete conceptual design of scalable and cyclosable large scale fuel processor

Acknowledgements:
1. Entire CHARM / PowerTap™ team
2. Sud-Chemie, Inc
3. U.S. Department of Energy (DOE) for financial support