U.S. Department of Energy
Hydrogen Program

Hydrogen Delivery

Monterey Gardiner

2008 DOE Hydrogen Program
Merit Review and Peer Evaluation Meeting

June 11th, 2008
Goal and Objectives

Goal: Research and develop low-cost, highly efficient hydrogen production technologies from diverse domestic resources, including natural gas and renewable sources.

- Reduce the cost of hydrogen to $2.00 - $3.00/gge (Untaxed & Delivered)

Near-term: Distributed Production
(produced at station to enable low-cost delivery)
- Natural gas reforming
- Renewable liquid reforming
- Electrolysis

Longer-term: Centralized Production
(large investment in delivery infrastructure needed)
- Biomass gasification
- Coal with sequestration
- Wind, solar, and nuclear-driven electrolysis
- Solar/nuclear high-temperature thermochemical water splitting
- Photoelectrochemical, biological production

- Reduce total hydrogen delivery cost to < $1.00/gge
FY2008 Emphasis

- Initiate 6 new projects
 - Compression
 - Off-board storage
 - Liquefaction
- Release V2 of H2A and identify V2.5 refinements
- Gather data for eventual pipeline material down selection

FY2008 Budget = $10.7 M

- Pipelines 22.2%
- Compression 26.9%
- Liquefaction 19.9%
- Storage 21.5%
- System Analysis 5.2%
- Carriers 4.3%
Challenges – H\textsubscript{2} Delivery

- **Pipelines (Long Term)**
 - Capital cost
 - Materials
 - Large centrifugal compressors

- **Liquefaction (Long Term/Transition)**
 - Capital cost
 - Energy efficiency

- **Tube Trailers (Transition)**
 - Increased density
 - Maintaining relatively low cost trucks
 - Maintaining energy efficiency

- **Other Topics**
 - Off-board storage (decrease station footprint)
 - Compression (station, liquefaction, pipelines)
2008 Delivery Accomplishments

Identified Low Cost & Low Permeability Fiber Reinforced Polymer

- 1 psi per day or
 - << 0.1% hydrogen per day
- Developed & verified test bed for ASME compliance testing

(Oak Ridge and Savannah River)
2008 Delivery Accomplishments

Developed Prototype Electrochemical Hydrogen Compressor
- Peak compression of 4000 psi
- Continuous operation for 1500 hours
- No seal leakage

(FuelCell Energy)

Identified APCI Liquid Hydrocarbon as a Promising Carrier
- Developed novel carrier evaluation and down select tool
- Planned integration into H2A V.3

(TIAx, LLC)
2008 Delivery: Tube Trailers

- Best Approach: High pressure, low temperature hydrogen delivery vessels using glass fibers, LLNL
- Cost
 - Reducing trailer capital costs ($300K for 700kg)
 - Availability of glass composites (~$1.50/kg material cost)
 - Potential to hit $1/kg H\(_2\) delivered at 600 kg/day station
- Technical Needs
 - Demonstrate glass fiber strengthening at cold temperatures and/or vacuum (50%) at 200 K vs. 300 K
 - Design new macrolattice/fiber wound vessels that take advantage of the fiber properties
- Other Roadblocks
 - Innovative truck configurations would require the codes and standards community to accept a new technology
- Next Steps
 - Complete cryogenic characterization of glass fibers
 - Demonstrate low cost delivery vessel

![Diagram](cold-glass-fiber-pressure-vessels-minimize-tanker-truck-cost-enabling-inexpensive-hydrogen-delivery.png)
2008 Delivery: Liquefaction

- **Best Lead:** Innovative cycle design, GEECO
- **Cost**
 - Modeled liquefaction costs are $.76/kg with an increase in efficiency of 30% over state-of-the-art liquefiers
- **Technical Needs**
 - Efficiency of liquefaction limited by thermodynamics
 - GEECO’s innovative liquefaction cycle has not yet been tested at the bench scale
- **Other Roadblocks**
 - Scaling from the laboratory to a full scale commercial plant (~$400M in capital costs)
 - GHG generation, when not considering renewable energy
- **Next Steps**
 - Constructing components to test in the coming year

M. Shimko, et al GEECO
The Program has reduced the cost of producing hydrogen from multiple pathways.

Summary

Cost of Hydrogen (Delivered) — Status & Targets
in $/gallon gasoline equivalent (gge), untaxed

NEAR TERM: Distributed Production

- Hydrogen is produced at station to enable low-cost delivery

- Distributed Natural Gas
- Distributed Electrolysis
- Distributed Bio-Derived Renewable Liquids

LONGER TERM: Centralized Production

- Large investment in delivery infrastructure needed

- Biomass Gasification
- Coal Gasification with Sequestration
- Solar High-Temperature Thermochemical Cycle
- Central Wind Electrolysis
- Nuclear
Hydrogen Delivery

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Alkire</td>
<td>(303) 275-4795</td>
<td>james.alkire@go.doe.gov</td>
</tr>
<tr>
<td>Tim Armstrong</td>
<td>(865) 574-7996</td>
<td>armstrongt@ornl.gov</td>
</tr>
<tr>
<td>Paul Bakke</td>
<td>(303) 275-4916</td>
<td>paul.bakke@go.doe.gov</td>
</tr>
<tr>
<td>Rick Farmer</td>
<td>(202) 586-1623</td>
<td>richard.farmer@ee.doe.gov</td>
</tr>
<tr>
<td>Monterey Gardiner</td>
<td>(202) 586-1758</td>
<td>monterey.gardiner@ee.doe.gov</td>
</tr>
<tr>
<td>Jill Gruber</td>
<td>(303) 275-4961</td>
<td>jill.gruber@go.doe.gov</td>
</tr>
<tr>
<td>Dave Peterson</td>
<td>(303) 275-4956</td>
<td>david.peterson@go.doe.gov</td>
</tr>
<tr>
<td>Lea Yancey</td>
<td>(303) 275-4944</td>
<td>lea.yancey@go.doe.gov</td>
</tr>
</tbody>
</table>