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Overview

Timeline

Project start date: 05/30/2005
Project end date: 10/31/2008
Percent complete: 90%

Budget

Total project funding

> DOE share: $2.6M

> Contractor share: $1.4M
Funding received in FY05: $490K
Funding received in FY06: $400K
Funding received in FY07 : $1.37M
Funding received in FY08 : $0

No-cost extension

granted to

10.31.08
imagination at work

Barriers

e Technical Barriers Addressed:

- A. Cost of Fuel Processor

- C. Operation and Maintenance (O&M)

- D. Feedstock Issues

- E. Catalyst sulfur tolerance & durability
e Technical Targets (2010):

- Total Energy Efficiency (%LHV) > 75%

- Total H, Cost $2.00-$3.00/gge H,

Partners

e University of Minnesota
e Argonne National Lab
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Objectives

The main objective of the SCPO
project is the development of a
low-cost, compact reforming
technology that is fuel flexible;
developed to operate on on
fossil fuels but adaptable to
renewable fuels.

*This technology integrates three catalysts into a single compact reactor:
catalytic partial oxidation (CPO), steam methane reforming (SMR), and
water gas shift (WGS).

eDemonstrated via testing of high-pressure pilot-scale CPO, SMR and WGS
reactors in GE Global Research’s lab at Irvine, California.
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Approach

Project Team

@ GE Global
) Research

Energy and Economic
Anallvses HTS Catalyst
Development, Pilot-Scale
System Design/

Fabrication/Operation, and
Overall Project Management
University of

Lf Minnesota

Short Contact Time Catalyst
ldentification, Preparation,
and Parametric Testing

Argonne
National Lab
Catalyst Durability, Lifing

and Characterization

3-Year, $4-Million Program to Develop a Compact Integrated

Hydrogen Generator Based on SCPO Technology

Project Objective: To develop a compact hydrogen
generator that can deliver H, at a cost of

<$3.00/Kg with >75% efficiency

Short Contact il 1

Time Catalyst System Design Pilot-Scale System

Development and Analysis  pesign and Operation
Technical Approach

* Develop short contact time catalysts
* Design compact integrated reformer based on SCPO technology
* Demonstrate feasibility of the concept on a pilot-scale system

o NG Y,
f 1 i i 1 [ Bench-Scale )
Short Contact Lab-Scale
Current Time Catalyst Short Contact Deve(l:: t::{:‘t and ss(é:g.ﬁysatf‘r:
Scresning ) Time 'j SCPO%rototype E’ Commercialization
i ) Catalysts ] 7 | Demenstration | |
(conventionall [ UoM.ANL, | [ uom,ANL, | GE SCPO Ridroden
Reforming GE Catalyst GE Catalysts Prototype s

imagination at work

Generator

and Process

Testing
Modeling
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Anticipated Benefits

* Revolutionary, compact,
highly efficient and low
cost H, generation
techn %ogy

* Applications in H»
refueling stations and
coproduction of H,
and electricity with
CO, separation

Program Deliverables

|
Development of SCPO Based Hydrogen Generator

* Short contact time
reforming and
shift catalysts

* Pilot-scale H-, generator
meeting DOé targets



SCPO & Warm Gas Cleanup 2007-

2008 Major Milestones
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ePrepared catalyst test samples for in-house and Premix tests and
compared to commercial formulation

eCompleted 40 experimental runs in CPO system up to 500kh-1

GHSV and 275 psig. (70Kg/day H, production level)

eCompleted screening, spatial profiling, and sulfur exposure tests
eIntegrated results into modeling efforts for cost analysis and Gas
Turbine integration systems analysis m
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eCompleted design, construction and shakedown of combined
SMR/WGS system in 2007

eCompleted precious metal and nickel based SMR catalyst
screening, long term testing, and sulfur tolerance at Argonne
National Lab

eCompleted SMR system large scale demonstrations at FCL

Premix design for CPO/Gas Turbine

eDesigned, fabricated reactor & premixer

» Retrofitted experimental facility with reactor
e Completed test matrix from 250-500 kh-t
GHSV at different steam concentrations
eAchieved near equilibrium H, production

359 Equilibrium H,%
30 4= e
25 - Rh/Ce catalyst

8 - O5/E=0:65-5/€=0-P=100psig
15 -
10 -
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eIntegrated results into heat transfer modeling -_
Water Gas Shift (WGS)
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eCompleted design, system modeling and reactor fabrication
eCompleted WGS catalyst screening at Argonne National Lab
eCompleted aggressive HAZOP review for 2007 and baseline
WGS catalyst testing 5



Distributed Hydrogen Fueling Station Using GE SCPO
Technology

c
N | Hydrogen
vl Storage
i | Tanks
3? Pressure Swing
"’2* Absorber
- M| - Vertical
Hydrogen | e Vessels
Dispensers I ‘ o Surge Tanks

e Compressors

Hydrogen
Compressors

SCPO
Reactor

Huydrogen Dispensers

{ - r.:: -
« SCPO |
Compressor

e Steam
Generator
Pumps

Control Box

Air Blower

Heat Exchanger
Desulfurizer
Ventilation
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Hydr * Surge Tonks
Stormge fonks _Hydrogen + Compressors

SCPO Cost of Hydrogen Estimation Approach  Conceptual Design

Process Evaluation

(Assumptions) /

Updated CPO Performance
w/ Experimental Data

H2A Model = S _
o | SCPO Conversion]  99.56% 98.18%

SMR Conversion 74.16% 79.10%

Production Unit Hydrogen Efciency (Ja) 73 .0% 75 4%
Production Step Efficiency (%) 70.3% 72.5%

Total System Efficiency {%) 66.5% 68.5%

Cotol st & Process R&D

Technology

Economics

Updated Cost of Hydrogen:

$3.025/kg
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Cost of Hydrogen Updates

Prior Assumption Experimental

SCPO Convwersion 99.56% 98.18%

SMR Conversion 74.16% 79.10%

Production Unit Hydrogen Efficiency (%) 73.0% 75.4%
Production Step Efficiency (%) 70.3% 72.5%

Total System Efficiency (%) 66.5% 68.5%

Hydrogen Selling Price and Cost Contributions (Year 2005 $)

Previous H2A | Updated H2A
Required Hydrogen Selling Price ($(Year 2005)/kg of H2) $3.052 $3.025
Capital Costs ($/kg of H2) $1.384 $1.384
Fixed O&M ($/kg of H2) $0.578 $0.578
Feedstock Costs ($/kg of H2) $0.828 $0.802
Other Raw Material Costs ($/kg of H2) $0.000 $0.000
Byproduct Credits ($/kg of H2) $0.000 $0.000
Other Variable Costs (including utilities) ($/kg of H2) $0.262 $0.261

Aspen model of the SCPO system was updated using
the SCPO and SMR experimental data = Updated H2A
cost analysis

imagination at work



N e

Controlled and Monitored
Gas Delivery

Steam Methane Reforming
(SMR)

,\.\,‘ Water-Gas-Shift (WGS)
|
b )
'
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Task 1 Premix CPO and Sulfur Tolerant Catalysts
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Spatial Profiles Inside the Foam Catalyst

rangatis M < -Developed a system that allows to in situ sampling in a system with very
high temperature and species gradients

Heater

Quartz

oy« Unprecedented spatial resolution (~300um) on the order of the

gar:giing characteristic length of the support

77 « Sampling method introduces minimal disturbance in flow. Sample rate
10ml/min, total flow 5000ml/min

Qurg
Back heat  Liner

shield -
Catalyst

A

Front heat

shield ~ e -
Insulation

» Analysis is done by mass spectroscopy which is continuously calibrated by
gas chromatography

E Inlet Gas AF':!{ "y

J_
Flange
Capillary toMS | Linear
Stage
Reactor
Space Filler
Stepper 8 0 cm
Motor Access Point
for temperature probe G as In | et

Mounting Flanges
Translation stage
Pressure control valve




Temperatures and Species at GHSV 164,000h1 O,/C=0.5
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Mass transfer effects N‘
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Conversion

(%)

CPO short term life testing
followed by mass spec profiling

75 hour life test of GE baseline catalyst: 80 PPI pre-capillary drilled, L/D=0.65
Conditions: 500,000 h*t GHSV, S/C=1, 0,/C=0.67
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No significant changes seen through catalyst profile after 75 hours online with no sulfur;

However, profiling shows the catalyst seems to be losing steam-reforming capability most likely 15



Effect of Sulfur on CPO ”‘

UoMn data shows that sulfur
inhibits the steam reforming zone, GHSV 1.4x10° h-1. C/0=1.

but is steady over 50 hours of
testing with CH;SH

e ! ]
1.25 ! i -
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) E 0.75f ! ‘.'\ e A\ E
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Longer term CPO performance with sulfur
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Methane turnover and hydrogen

formation in CPO with and without sulfur:

GE baseline formulation

10 -~
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We are evaluating step-loss in performance as well as longer term deactivation

imagination at work
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Optimizing start/stop CPO behavior in
the presence of sulfur

CPO performance of GE baseline formulation using 20 ppm S simulated natural gas (Steamed

stop/starts)
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Task 2 & 3 SMR & Shift Experiments

imagination at work
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225 psig

Steam Methane Reforming Results cquilibrium curve
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Task 3. Water Gas Shift Catalyst & Reactor Designs
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ANL - FYO7 and 08 Workscope and Status

Steam reforming catalyst evaluation and development

> Precious metal catalysts (3 catalysts from vendor A; 2 catalysts from vendor B;
and 3 catalysts from Argonne)

- Activity (Status: completed)
e Low temperature SMR conditions
e High temperature SMR conditions
— Durability (Status: completed)
e Low temperature SMR conditions
- Sulfur-tolerance (Status: completed)
* Low temperature SMR conditions at 5 and 20 ppm H,S
» CPO extended sulfur test
> Base metal catalysts (4 catalysts from two commercial vendors)
- Activity (Status: complete)
~ Durability (Status: complete)
Water-gas shift catalyst evaluation
> Precious and base metals (1 PM and 1 base metal catalyst, two different vendors)
- Activity (Status: complete)
— Durability (Status: in progress)

23
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WGS and SMR Catalysts Were Evaluated for Activity and Durability

PM SMR Catalysts evaluated under CPO conditions

Activity - High Temp WGS Conditions

Temperature profile observed for a commercial PM

SMR catalyst operating under CPO conditions = —
Inlet %CO -7.9% & SR nGwrats
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0 ppm H,S 23 ppm H;S — Poly. (1X flowrate)
925 1 le g o — Poly. (3X flowrate)
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O 900 - g 4.00 -
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5 YN g
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B2 2 . temperature, and space velocity.
58 .
g - 100, sa Bk, o o
58 ... 45 L ammus Durability was evaluated for SMR under CPO conditions, not
58 i A \m L acceptable for sulfur tolerance.
T % 050 - A A o R
N s
g sy M A% Identified the catalyst that exhibits the best combination of
0.00 : : activity and durability for both SMR and WGS and validated
656 680 704 728

kinetics.

Time on Stream, h
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Summary & Highlights

> Project extended to Oct. 31, 2008 for refined economics and CPO
catalyst testing

» Completed SMR demonstration and kinetics validation

» Completed WGS demonstration and most of the kinetic data validation

> High-P CPO data obtained from our high-P CPO unit continues to
synergize with UoMn characterization work.

> Initial work on sulfur tolerance is promising and we are characterizing
activity loses

» Completed cost analysis using GE's process model & DOE’s H2A model

Economic analysis has been refined with new experimental data
> Base case catalysts identified, Reactor sizing / design completed.
» HEX technology tradeoff completed, HEX technology selected, design

completed
» Control strategy, start-up & shut-down procedure being developed.

25
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Conclusions & Recommendations

d SCPO will be a leading technology for H, production from NG. It
IS a cost-effective distributed H, production technology based on the
economic analysis of different H, production technologies. With
minor modification, we can extend the feed to gasoline, diesel,

ethanol & methanol.

O The technologies developed in this program has good synergies
with application in fuel blending, NGCC with CO2 capture, SOFC &

syngas production for GTL....

Refinement of the system analysis for updated costs
and further development of the CPO catalyst (sulfur
tolerance) will be the focus points for the remainder of

the project year.

imagination at work
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