Analyses of Hydrogen Storage Materials and On-Board Systems

Project ID # ST1

Cryo-compressed and Liquid Hydrogen System Cost Assessments

DOE Merit Review
June 10, 2008

Stephen Lasher
Kurtis McKenney
Yong Yang
Matt Hooks

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start date: June 2004
- End date: June 2009
- 54% Complete

Barriers
- Barriers addressed
 - B. Cost
 - C. Efficiency
 - K. System Life Cycle Assessments

Budget
- Total project funding
 - DOE share = $1.5M
 - No cost share
- FY07 = $170k
- FY08 = $350k (plan)

Collaboration
- Argonne and other National Labs
- Centers of Excellence and other developers
- Tech Teams and other stakeholders
Objectives

This project provides an independent cost assessment of the hydrogen storage technologies being developed for the DOE Grand Challenge.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
<th>Technology Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>Help guide DOE and developers toward promising R&D and commercialization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pathways by evaluating the status of the various on-board hydrogen storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>technologies on a consistent basis</td>
<td></td>
</tr>
<tr>
<td>On-Board Assessment</td>
<td>Evaluate or develop system-level designs to estimate weight, volume, and</td>
<td>• Liquid H₂
• Compressed H₂
(update)*</td>
</tr>
<tr>
<td></td>
<td>bottom-up factory cost for the on-board storage system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sodium Alanate
• SBH</td>
<td>• AC
• Liquid HC
• Ammonia Borane</td>
</tr>
<tr>
<td>Off-Board Assessment</td>
<td>Evaluate or develop designs and cost inputs to estimate refueling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cost and Well-to-Tank energy use and GHG emissions for the fuel chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Liquid H₂
• Compressed H₂</td>
<td>• SBH*</td>
</tr>
<tr>
<td></td>
<td>• SBH*</td>
<td>• Liquid HC
• Ammonia Borane</td>
</tr>
</tbody>
</table>

* Results presented in Backup Slides.

Note that previously analyzed systems will continually be updated based on feedback and new information.

SBH = Sodium Borohydride, HC = Hydrocarbon, AC = Activated Carbon
The on-board cost and performance assessments are based on detailed technology assessment and bottom-up cost modeling.

Technology Assessment
- Perform Literature Search
- Outline Assumptions
- Develop System Requirements and Design Assumptions
- Obtain Developer Input

Cost Model and Estimates
- Develop BOM
- Specify Manufacturing Processes and Equipment
- Determine Material and Processing Costs
- Develop Bulk Cost Assumptions

Overall Model Refinement
- Obtain Developer and Industry Feedback
- Revise Assumptions and Model Inputs
- Perform Sensitivity Analyses (single and multi-variable)

BOM = Bill of Materials
We completed on-board cryogenic system assessments and updated compressed and SBH cost estimates since the last Review.

- Completed cryo-compressed and preliminary liquid hydrogen (LH$_2$) on-board storage system cost assessments
 - Based on the LLNL 2$^{\text{nd}}$ generation cryo-compressed system with modifications
 - Included processing and detailed component cost estimates
 - Updated carbon fiber cost based on industry feedback ($13/lb fiber)
 - $14/kWh and $8/kWh (preliminary) for cryo-compressed and LH$_2$, respectively
- Updated compressed hydrogen (cH$_2$) on-board storage system estimates
 - Based on Tech Team and industry feedback for pressure requirements and material cost ($13/lb fiber)
 - $17/kWh and $27/kWh for 5,000 and 10,000 psi storage, respectively
- Updated Sodium Borohydride (SBH) on-board and off-board system estimates
 - Based on latest information provided by developers (primarily MCell and Rohm and Haas)
 - The higher SBH concentration assumed by MCell results in reduced on-board system size, but still does not meet the DOE 2010 targets
 - New off-board regeneration pathways could reduce costs, but the resulting selling price is still in excess of the goal of $2-3 \text{ kg/H}_2$ using the base case assumptions
The LLNL second generation tank design was the basis of our cryo-compressed storage system cost assessment.

Key Cryo-compressed Tank Specifications

- 151 L (38 gal, 10.7 kg) LH$_2$
- -253 °C min temp
- 5,000 psi (~350 bar) max pressure
- 3 mm (0.118”) thick Al liner
- 12 mm (0.47”) T700S carbon fiber, 60% fiber vol, 2.25 SF, 82% translation strength
- 40 mm (1.57”) vacuum gap w/ 40 layer of MLVI, 10-5 torr, ~1 W HT rate
- 3 mm (0.118”) thick SS304 outer shell

Additional modifications were made based on literature and developer feedback.
Processing and assembly/inspection costs were generated by developing process maps, and obtaining developer feedback.

Processing Steps for Cryo-tank Insulation, Assembly, and Inspection

- **SS Outer Tank Dome Stamping**
 - Capex: $1.3 M
 - # of Labor: 2
 - Cycle Time: 0.1 Mins

- **Inner Tank Assembly**
 - Capex: $50K
 - # of Labor: 2
 - Cycle Time: 30 Mins

- **Attach the MIL onto Composite Tank**
 - Capex: $200K
 - # of Labor: 2
 - Cycle Time: 30 Mins

- **Vacuum Space Piping Assembly**
 - Capex: $100K
 - # of Labor: 2
 - Cycle Time: 60 Mins

- **Cut the MIL into Required Shape**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 5 Mins

- **Laminate Multiple Insulation Layer**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 10 Mins

- **SS Outer Tank Body Welding (One End)**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 0.2 Mins

- **Welding (On One End)**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 0.5 Mins

- **Vacuum Space Piping Assembly**
 - Capex: $100K
 - # of Labor: 2
 - Cycle Time: 30 Mins

- **SS Outer Tank Body Welding**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 5 Mins

- **Outer Tank Assembly**
 - Capex: $200K
 - # of Labor: 2
 - Cycle Time: 60 Mins

- **Tank Insulation Vacuum Processing**
 - Capex: $300K
 - # of Labor: 0.1
 - Cycle Time: 1440 Mins / 10 tanks

- **Final System Inspection**
 - Capex: $200K
 - # of Labor: 1
 - Cycle Time: 30 Mins
The costs of key processing steps were estimated from capital equipment, labor, and other operating costs assuming high volumes (500,000 units/year) and a high level of automation.

<table>
<thead>
<tr>
<th>Cryo-compressed Key Processing Steps</th>
<th>Process Cost per Tank</th>
<th>% of Total Processing Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Liner Fabrication, Assembly, & Inspection</td>
<td>$76</td>
<td>13%</td>
</tr>
<tr>
<td>Carbon Fiber Winding Process</td>
<td>$56</td>
<td>10%</td>
</tr>
<tr>
<td>SS Vacuum Shell Fabrication</td>
<td>$14</td>
<td>2%</td>
</tr>
<tr>
<td>MLVI Wrapping</td>
<td>$108</td>
<td>18%</td>
</tr>
<tr>
<td>In-vessel Assembly</td>
<td>$42</td>
<td>7%</td>
</tr>
<tr>
<td>Ex-vessel Assembly</td>
<td>$128</td>
<td>22%</td>
</tr>
<tr>
<td>Vacuum Processing</td>
<td>$119</td>
<td>20%</td>
</tr>
<tr>
<td>Final Inspection</td>
<td>$40</td>
<td>7%</td>
</tr>
<tr>
<td>Total</td>
<td>$583</td>
<td>-</td>
</tr>
</tbody>
</table>

Processing costs make up 13% of the total cryo-compressed system cost.

Note: Details provided in Backup Slides.
Carbon fiber and cryogenic valves are the dominant costs, accounting for approximately 50% of the overall system cost.

Cryo-compressed System Cost, 10.7 kg LH₂ Capacity (10.1 kg Usable) = $4,527 ($13.6/kWh)

- **Carbon Fiber Composite, $1,448**
- **MLVI, $224**
- **SS Vacuum Shell, $308**
- **Al Liner & End Fittings, $130**
- **Balance of Vessel, $215**
- **Cryogenic Valves, $900**
- **Electronic Control System, $150**
- **Pressure Regulator, $250**
- **Other BOP, $541**
- **Assembly & Inspection, $329**
- **Hydrogen, $32**

Component costs including processing

a Costs per kWh are based on a projected 10.1 kg (336 kWh) “usable” hydrogen assuming 94% drive cycle utilization (ANL 2006).

b The total system cost could be reduced by ~5% by using an aluminum shell rather than stainless steel.
Variability in the carbon fiber (CF) related costs and valve costs can significantly affect the overall cost of the cryo-compressed system.

Key Sensitivity Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Baseline</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Factor</td>
<td>2.35</td>
<td>1.80</td>
<td>3.0</td>
</tr>
<tr>
<td>CF Prepreg (Fiber & Matrix) Cost ($/lb)</td>
<td>16.6</td>
<td>12.8</td>
<td>20.4</td>
</tr>
<tr>
<td>Cryogenic Control Valve Cost ($)</td>
<td>150</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>CF Tensile Strength (MPa)</td>
<td>2,940</td>
<td>2,550</td>
<td>3,100</td>
</tr>
<tr>
<td>Cryogenic Relief Valve Cost ($)</td>
<td>75</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>Pressure Regulator Cost ($)</td>
<td>250</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>SS304 Cost ($/kg)</td>
<td>4.7</td>
<td>3.7</td>
<td>5.8</td>
</tr>
<tr>
<td>CF Translation Strength (%)</td>
<td>81.5%</td>
<td>78%</td>
<td>85%</td>
</tr>
<tr>
<td>MLVI Cost ($/kg)</td>
<td>50</td>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>

Comments/Source

- **Safety Factor**: Baseline is typical industry standard; Min and Max based on discussions with Quantum and Dynatek (2005).
- **CF Prepreg (Fiber & Matrix) Cost ($/lb)**: Based on discussion w/ Toray (2007); re: T700S fiber ($10-$16/lb, $13/lb baseline); 1.27 prepreg/fiber ratio (DuVall 2001).
- **Cryogenic Control Valve Cost ($)**: Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007).
- **CF Tensile Strength (MPa)**: Baseline from TIAX netting analysis using optimized wrap angle for pressure vessel geometry; Min from Toray T700S data sheet (2007); Max assumes 5% increase over baseline; 60% fiber by volume assumed.
- **Cryogenic Relief Valve Cost ($)**: Discussions with Circle Seal (2007) and Swagelock (2007) vendors.
- **Pressure Regulator Cost ($)**: Discussions with TESCOM vendor and tank developers (2007).
- **SS304 Cost ($/kg)**: Baseline, Min, and Max are the average, min, and max monthly costs, respectively, from Sep '06 – Aug '07 (MEPS International 2007) deflated to 2005$ by ~6%/yr.
- **CF Translation Strength (%)**: Based on Quantum (2005) for 5,000 psi CF tanks.
- **MLVI Cost ($/kg)**: Estimates based on discussions with MPI (2007).
The cryo-compressed tank design was used as a starting point for the liquid hydrogen system cost assessment.

Sketch of Key LH₂ System Components

Modifications were made based on literature and developer feedback.
Control and relief valves account for a combined 30% of the total cost, but costs are relatively evenly distributed among major components.

Preliminary Liquid System Cost,
10.7 kg LH₂ Capacity (10.1 kg Usable) = $2,715 ($8.1/kWh)

a Costs per kWh are based on a projected 10.1 kg (336 kWh) "usable" hydrogen assuming 94% drive cycle utilization (ANL 2006) for cryo-compressed drive cycle efficiency. Utilization needs to be updated for LH₂.

b The total system cost could be reduced by ~8% by using an aluminum shell rather than stainless steel.
Variability in the cryogenic valve costs can significantly affect the overall cost of the liquid system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base-line</th>
<th>Min</th>
<th>Max</th>
<th>Comments/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryogenic Control Valve Cost ($)/unit</td>
<td>105</td>
<td>70</td>
<td>175</td>
<td>Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007)</td>
</tr>
<tr>
<td>Cryogenic Relief Valve Cost ($)/unit</td>
<td>50</td>
<td>35</td>
<td>75</td>
<td>Discussions with Circle Seal (2007) and Swagelock (2007) vendors</td>
</tr>
<tr>
<td>Pressure Regulator Cost ($)/unit</td>
<td>150</td>
<td>100</td>
<td>250</td>
<td>Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007)</td>
</tr>
<tr>
<td>SS 304 Cost ($)/kg</td>
<td>4.7</td>
<td>3.7</td>
<td>5.8</td>
<td>Baseline, Min, and Max are the average, min, and max monthly costs, respectively, from Sep ’06 – Aug ’07 (MEPS International 2007) deflated to 2005$ by ~6%/yr</td>
</tr>
<tr>
<td>Electronic Control Box Cost ($)/unit</td>
<td>150</td>
<td>100</td>
<td>200</td>
<td>Estimate based on interviews with technology experts (includes microcontroller, valve relays, analog inputs, and power regulator)</td>
</tr>
<tr>
<td>MLVI Cost ($)/kg</td>
<td>50</td>
<td>35</td>
<td>65</td>
<td>Estimates based on discussions with MPI (2007)</td>
</tr>
</tbody>
</table>

Baseline = $8.1/kWh
The cryo-compressed and liquid hydrogen on-board systems are projected to be cheaper than pressurized-only options.

$\text{System Cost, } $/\text{kWh}$

<table>
<thead>
<tr>
<th>System</th>
<th>10.7 kg LH$_2$</th>
<th>~5.6 kg H$_2$</th>
<th>2010 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo-Compressed</td>
<td>$10.7/\text{kWh}$</td>
<td>$15.2/\text{kWh}$</td>
<td>$26.7/\text{kWh}$</td>
</tr>
<tr>
<td>LH$_2$ (preliminary)</td>
<td>$8.1/\text{kWh}$</td>
<td>$11.4/\text{kWh}$</td>
<td>$17.1/\text{kWh}$</td>
</tr>
<tr>
<td>Sodium Borohydride</td>
<td>$4.8/\text{kWh}$</td>
<td>$4.8/\text{kWh}$</td>
<td>$4.8/\text{kWh}$</td>
</tr>
<tr>
<td>Sodium Alanate</td>
<td>$8.1/\text{kWh}$</td>
<td>$8.1/\text{kWh}$</td>
<td>$8.1/\text{kWh}$</td>
</tr>
<tr>
<td>5,000 psi d</td>
<td>$11.4/\text{kWh}$</td>
<td>$11.4/\text{kWh}$</td>
<td>$11.4/\text{kWh}$</td>
</tr>
<tr>
<td>10,000 psi d</td>
<td>$17.1/\text{kWh}$</td>
<td>$17.1/\text{kWh}$</td>
<td>$17.1/\text{kWh}$</td>
</tr>
</tbody>
</table>

$\text{$/kWh}=13.6 \text{ a}$

- a Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system costs of approximately $20/kWh and $14/kWh, respectively.
- b An aluminum shell (rather than SS) offers approximately 5% and 8% costs savings for the cryo-compressed and liquid systems, respectively.
- c The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.

$\text{2010 Target ($4/kWh$)}$
The liquid system meets the 2010 weight target, and the cryo-compressed system would also meet the target with an aluminum shell\(^a\).

<table>
<thead>
<tr>
<th>System Weight, kg</th>
<th>Cryo-compressed (^b)</th>
<th>LH(^b) (preliminary)</th>
<th>Sodium Borohydride</th>
<th>Sodium Alanate (^c)</th>
<th>5,000 psi</th>
<th>10,000 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt(%)=5.5 (^a)</td>
<td>6.5 (^a)</td>
<td>3.3</td>
<td>5.3</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system gravimetric capacities of approximately 4.0 wt\(\%\) and 4.4 wt\(\%\), respectively.

\(^b\) An aluminum shell (rather than SS) increases gravimetric capacities to 7wt\(\%\) and 9 wt\(\%\) for the cryo-compressed and liquid systems, respectively.

\(^c\) The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.
None of the on-board storage systems evaluated to date meet the 2010 volume target given our base case assumptions.

Note: Volume results do not include void spaces between components (i.e., no packing factor was applied).

a Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system volumetric capacities of approximately 28 g/L each.
b The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.
Future Work

We will focus on the liquid hydrocarbon- (HC) and ammonia borane-based hydrogen storage systems for the remainder of FY08.

- Complete on-board assessments of APCI liquid HC system and begin assessment of ammonia borane system
 - Solicit feedback from developers and coordinate with ANL on final system requirements and design assumptions
 - Specify manufacturing processes and equipment and determine material and processing costs
 - Use sensitivity analysis to account for uncertainties and potential future technology developments
- Conduct off-board analyses for the liquid HC and ammonia borane systems
 - Finalize designs and cost inputs for the complete fuel chain
 - Estimate refueling cost and Well-to-Tank energy use and GHG emissions for the fuel chain
- Continue to work with DOE, H2A, other analysis projects, developers, National Labs, and Tech Teams to revise and improve past system models
 - Including finalize liquid hydrogen storage system results based on developer (e.g., Air Liquide) and stakeholder feedback
We have completed certain aspects of on-board and off-board evaluations for eight hydrogen storage technologies.

<table>
<thead>
<tr>
<th>Analysis To Date</th>
<th>cH₂</th>
<th>Alanate</th>
<th>MgH₂</th>
<th>SBH</th>
<th>Cryo-comp</th>
<th>LH₂</th>
<th>AC</th>
<th>Liquid HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review developer estimates</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop process flow diagrams and system energy balances</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>Independent performance assessment (wt, vol)</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>Independent cost assessment</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>Off-Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review developer estimates</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop process flow diagrams and system energy balances</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent performance assessment (energy, GHG)</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>Independent cost assessment</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTT analysis tool**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solicit input on TIAX analysis</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td>* Preliminary results under review.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a Working with ANL and H2A participants on separate WTT analysis tools.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Preliminary results under review.
a Working with ANL and H2A participants on separate WTT analysis tools.

WIP = Work in progress

= Not part of current SOW