A Synergistic Approach to the Development of New Hydrogen Storage Materials, Part I

Jean M. J. Fréchet, Martin Head-Gordon, Jeffrey R. Long, Thomas J. Richardson, and Samuel S. Mao

Department of Chemistry, University of California, Berkeley and Division of Environmental Energy Technologies, Lawrence Berkeley National Laboratory

June 10, 2008

Project ID # ST27

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start: 12/1/04
• Project end: 11/30/09
• Percent complete: 70%

Budget
• Total funding expected: $2.9M
 – $1.8M from DOE to UC Berkeley
 – $600k from DOE to LBNL
 – $500k in cost-sharing
• Funding FY07: $400k
• Funding FY08: $600k

Barriers
• Identify new materials enabling a hydrogen storage system achieving:
 – 2 kWh/kg (6 wt %)
 – 1.5 kWh/L (0.045 kg/L)
 – 4 $/kWh

Partners
• ChevronTexaco
• General Motors Corporation
• Electric Power Research Institute
Overall Program

Synthesis of porous polymers (Fréchet)
Synthesis of porous coordination solids (Long)
Calculations of H_2 binding energies (Head-Gordon)
Synthesis of destabilized hydrides (Richardson)
H_2 storage characterization instrumentation (Mao)
Metal/metal hydride nanocrystals (Alivisatos)
Synthesis of nanostructured boron nitrides (Zettl)
Theory for boron nitride materials (Cohen and Louie)

Note that the results presented here are solely from Part I, which is funded through EERE
H₂ Adsorption in a Hypercrosslinked Polymer

poly(chloromethylstyrene-co-divinylbenzene)

Surface area = 2,200 m²/g
Sorption capacity = 3.8 wt %

77 K
Comparison of Hypercrosslinked Polymers

- Hypercrosslinked poly(chloromethylstyrene) - co-divinylbenzene
 - Surface area = 2,200 m²/g

- Hypercrosslinked poly(chloromethylstyrene)
 - Surface area = 1,300 m²/g

- Rapid desorption with no hysteresis
- Lower enthalpy of adsorption
- Does the polymer swell with pressure?

77 K

Excess H₂ Adsorbed, wt %

Pressure, MPa
Hypercrosslinked Polyaniline

Route 1:

\[
\begin{align*}
\text{Route 1: } & \quad \text{H} \quad \text{N} \quad \text{H} \quad \text{N} \quad \text{N} \quad \text{N} \\
& \quad \begin{array}{c}
\text{R} \\
\text{R}
\end{array}
\quad \text{DMF} \\
& \quad \begin{array}{c}
\text{K}_2\text{CO}_3 \\
\text{NMP}
\end{array}
\end{align*}
\]

Route 2:

\[
\begin{align*}
\text{Route 2: } & \quad \text{H} \quad \text{N} \quad \text{H} \quad \text{N} \quad \text{N} \quad \text{N} \\
& \quad \begin{array}{c}
\text{CH}_2 \\
\text{CH}_2
\end{array}
\quad \text{NMP}
\end{align*}
\]
Effect of Crosslinking Route

- Crosslinking with methylene units gives highest surface areas
H$_2$ Uptake in Hypercrosslinked Polyaniline

- Steep rise consistent with increased heat of adsorption to 8-10 kJ/mol

77 K
Variation of N$_2$ Uptake in Zn$_4$O(BDC)$_3$ (MOF-5)

<table>
<thead>
<tr>
<th>preparation</th>
<th>N$_2$ uptake (mmol/g)</th>
<th>SA$_{BET}$ (m2/g)</th>
<th>SA$_{Langmuir}$ (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.8</td>
<td>570</td>
<td>1010</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
<td>950</td>
<td>1250</td>
</tr>
<tr>
<td>3</td>
<td>29.7</td>
<td>2900</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>31.6</td>
<td>3080</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>34.4</td>
<td>3360</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3530</td>
<td>4170</td>
<td></td>
</tr>
</tbody>
</table>

(2) Yan, et al. Microporous Mesoporous Mater. 2003, 58, 105
(3) Li, Eddaoudi, O'Keeffe, Yaghi Nature 1999, 402, 276
Optimized Synthesis and Activation of Zn$_4$O(BDC)$_3$

\[\text{Zn(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} \quad + \quad \begin{array}{c}
\text{HO-} \\
\text{C-H} \\
\text{C-OH}
\end{array} \\
\text{0.33 g, 2.0 mmol}
\]

\[\text{H}_2\text{BDC} \quad \xrightarrow{80 \degree C, 8 h, 50 \text{ mL DEF}} \quad \text{Zn}_4\text{O(BDC)}_3 \cdot x\text{DEF} \quad \text{0.37 g, 73%}
\]

- Heating too high or too long gives yellow-brown crystals with reduced storage capacity

Evacuation procedure

- Soak crystals in 10 mL DMF for 8 h (6 times)
- Soak crystals in 10 mL CH$_2$Cl$_2$ for 8 h (6 times)
- Evacuate crystals at 25 °C under dynamic vacuum until an outgas rate of <1 mtorr/min is achieved
Decomposition of $\text{Zn}_4\text{O(BDC)}_3$ in Air

$\text{Zn}_4\text{O(BDC)}_3 \rightarrow \text{Zn}_3(\text{OH})_2(\text{BDC})_2 + ?$ (nonporous)

Graph showing patterns with exposure time:
- 24 h
- 12 h
- 10 min
- <1 min

Counts vs. 2θ
Variation of N\textsubscript{2} Uptake in Zn\textsubscript{4}O(BDC)\textsubscript{3}

<table>
<thead>
<tr>
<th>preparation</th>
<th>N\textsubscript{2} uptake (mmol/g)</th>
<th>SA\textsubscript{BET} (m2/g)</th>
<th>SA\textsubscript{Langmuir} (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.8</td>
<td>570</td>
<td>1010</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
<td>950</td>
<td>1250</td>
</tr>
<tr>
<td>3</td>
<td>29.7</td>
<td></td>
<td>2900</td>
</tr>
<tr>
<td>4</td>
<td>31.6</td>
<td></td>
<td>3080</td>
</tr>
<tr>
<td>5</td>
<td>34.4</td>
<td></td>
<td>3360</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3530</td>
<td>4170</td>
</tr>
<tr>
<td>air-free</td>
<td>44.5</td>
<td>3800</td>
<td>4400</td>
</tr>
</tbody>
</table>

High-Pressure H_2 Uptake in $\text{Zn}_4\text{O(BDC)}_3$

- At 40 bar, a record physisorbed excess capacity of 7.1 wt % is achieved.
- Total uptake is the amount of gas contained within the volume of the crystals.

High-Pressure H₂ Uptake in Zn₄O(BDC)₃

- Knowledge of total uptake permits calculation of the volumetric storage density
- At 100 bar, a record physisorbed storage density of 66 g/L is achieved

Kinetics and Cycling for H$_2$ Uptake in Zn$_4$O(BDC)$_3$

- Results are upon exposure to a manifold of H$_2$ gas at 45 bar and 298 K
- No detectable loss in capacity or kinetics after 24 adsorption-desorption cycles

Room-Temperature H₂ Uptake in Zn₄O(BDC)₃

- At 298 K, framework offers little improvement over density of pure H₂ gas
- Due to very weak interaction of H₂ with the framework ($\Delta H_{ads} \approx 5$ kJ/mol)

Coating the Surfaces with Cr(CO)$_3$ Units

- Infrared spectrum matches that observed for molecular analogue
- Elemental analysis and NMR spectroscopy indicate attachment to all rings

Matrix Isolation Chemistry in a Framework

- Infrared spectra match those observed for molecular analogues
- Compound 3 is much more stable than analogue generated in frozen Xe
Strong H₂ Binding at Cr⁰ Centers

- Infrared spectra match those observed for molecular analogues
- Cr⁰-H₂ complex in compound 2 is stable indefinitely at room temperature!
Range of H₂ Binding Interactions

dispersion < electrostatics < charge-transfer

Lochan, Head-Gordon Phys. Chem. Chem. Phys. 2006, 8, 1357
Understanding H$_2$ Binding

A New Analysis Method

Decompose interaction energies rigorously into:

- Geometric distortion
- Frozen density interaction
- Induction
- Forward- and back-donation
- Small higher-order charge transfer

• Khaliullin, Cobar, Lochan, Bell, Head-Gordon J. Phys. Chem. A 2007, 111, 8753
Relative Effect of Substituent

Metal chosen as Cr0

![Graph showing energy levels and contributions of electrostatics, back-donation, and forward donation for different substituents.](image)
Effect of Substituent (R)

- Electron-donating groups enhance binding, while electron-withdrawing groups reduce binding
 - Tunability is 7% of binding
 - Energies are for three bound H$_2$ molecules

- Correlates with back-donation, electrostatics

- Quantitative information; qualitative insight
 - BDC$^{2-}$ substituents can fine-tune binding
 - Coarse-tuning must come from different metals
Effect of Metal Substitution

- Heavier isoelectronic elements:
 \((C_6H_6)Cr(H_2)_3\) binding per \(H_2\) of 68 kJ/mol
 \((C_6H_6)Mo(H_2)_3\) binding per \(H_2\) of 84 kJ/mol

- Lighter transition elements:
 \((C_6H_6)Cr(H_2)_3\) binding per \(H_2\) of 68 kJ/mol
 \((C_6H_6)Ti(H_2)_4\) binding per \(H_2\) of 32 kJ/mol

- Shows coarse tuning is possible
 Still need to examine synergy of these effects
Destabilization of Metal Hydrides

- Attempts at alloying of Mg in order to reduce ΔH
- Success in partial substitution to form $\text{Mg}_{1-x}A_x$ ($A = \text{Mn, Fe, Ni}$)
- Some increases in plateau pressures, but poor kinetics
- Attempts to substitute Na and Li for Mg are underway
Attempts to Generate MgH$_{2-x}$F$_x$ Solid Solutions

Preliminary results, not yet reproduced:

- MgH$_2$ + 10 mol% MgF$_2$ ball-milled
- 1$^{\text{st}}$ desorption at 663 K: 6.1 wt% (based on MgH$_2$ component)
- 1$^{\text{st}}$ absorption at 573 K: 7.4 wt%
- 2$^{\text{nd}}$ desorption at 663 K: 7.2 wt%

Does fluoride catalyze H$_2$ uptake and release via solid solution formation?
Destabilization of Complex Hydrides?

- Attempts at partial substitutions to adjust thermodynamics and kinetics
- Substitutions at both Mg and transition metal sites, as above
- Study effects of substituting F for H (e.g., CaH$_{2-x}$F$_x$ known for all x)
- Small fluoride additions reported to enhance reactivity of Mg$_2$Ni