Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Ping Liu and John Vajo
HRL Laboratories, LLC
Malibu, CA

June 12, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start date: March 2005
• Project end date: Feb 2010
• Percent complete: 60%

Budget
• Total Project Funding:
 Phase I - 3 years: $1.65M
 - DOE Share: $1.20M
 - Contractor Share: $0.45M
 Phase II - 2 years: $1.1M
 - DOE Share: $0.8M
 - Contractor Share: $0.3M

• Funding for FY08:
 $350K as of 4/1/07 (DOE),
 $150K (cost share)

Technical Barriers
• A. System weight and volume
• C. Efficiency
• E. Charging and discharge rates

Partners
• MHCoE collaborations:
 - U. Pitt, Georgia Tech: modeling of new systems and kinetic barriers
 - Stanford: thin film systems
 - Caltech, JPL, Hawaii, NIST: scaffolds
 - Intematix: catalysis

• DOE collaborations:
 - Drexel, LLNL, PNNL: carbon scaffolds

• International collaboration
 - Norway IFE: synchrotron XRD
Objectives

Overall
To develop and demonstrate a safe and cost-effective light-metal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2007/2008
• To identify and test new high capacity Li- and Mg-based destabilized hydrides
 ➢ Screen candidate LiBH$_4$ + MgX destabilized systems and evaluate energetics and kinetics
 ➢ Down-select systems for additional work
• Evaluate sorption kinetics and thermodynamics of LiBH$_4$ and Mg in carbon aerogel scaffolds
 ➢ Investigate effects of pore size and pore size distribution on reaction rates of LiBH$_4$
 ➢ Incorporate Mg into the aerogel and measure its kinetics
Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>June-07</td>
<td>Milestone: Incorporate Mg into carbon aerogel. Facilitated Mg incorporation with Ni or Cu as a wetting layer. Continue to improve process to reduce aerogel destruction and increase Mg loading.</td>
</tr>
<tr>
<td>Sept-07</td>
<td>Milestone: Complete screening of LiBH₄+MgX system and down select for further studies. Tested X=Si and Ni and found Ni system to be reversible with promising kinetics; work to continue on this system.</td>
</tr>
<tr>
<td>Sept-08</td>
<td>Milestone: Incorporate the LiBH₄/MgH₂ destabilized system into nanoscale scaffold. Successfully incorporated LiBH₄ and MgH₂ separately. Working to encapsulate the combined system. Measure hydrogen sorption thermodynamics and kinetics; incorporate catalysts into the system and investigate their effect on reaction rate.</td>
</tr>
</tbody>
</table>
Hydride Destabilization
(addresses thermodynamics)

Reduce reaction enthalpy by forming dehydrogenated alloy

- If alloy is stable w.r.t metal then hydride is destabilized
- System cycles between H-containing state and metal alloy
 ⇒ lower ΔH

Destabilization results in lower ΔH and $T_{1 \text{ bar}}$

Nano-engineering
(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding

- Shorter diffusion distances: faster hydrogen exchange
- More efficient catalysis pathways
- Nano-scaffolds as hosts for nanostructured hydrides:
 ⇒ structure-directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

New Destabilized Systems
– LiBH₄ + MgX –

• Potential systems include: X = F, Cl, OH, O, S, Se, CO₃, Si, SO₄, Cu, Ge, & Ni
 ➢ 12 destabilization reactions identified and characterized using HSC modeling software
 ➢ H-capacities ranging from 5.4-9.6 wt.%, T₁ bar from -10°C to 430 °C
 ➢ X = F, S, Se, CO₃, Cl, and Cu tested previously

• In FY07/08, two new systems tested, X = Si and Ni:
 4LiBH₄ + Mg₂Si ↔ 4LiH + 2MgB₂ + Si + 6H₂ (7.3 wt.%, T₁ bar = 230 °C)
 4LiH + 2MgB₂ + Si absorbs 5.5 wt % H₂ at 150 bar, 350°C
 Hydrogenation forms LiBH₄ and Mg₂Si
 However upon dehydrogenation Mg₂Si does not react

 4LiBH₄ + Mg₂NiH₄ ↔ 4LiH + 2MgB₂ + Ni + 6H₂ (8.3 wt.%)
 System cycles forming ternary boride(s) -- see following slides

Results for LiBH₄/Mg₂Ni may indicate new class of systems
LiBH$_4$/Mg$_2$NiH$_4$ Dehydrogenation

- Sample prepared by ball milling
- Dehydrogenation done in 4 bar H$_2$
- Hydrogenations between desorption cycles done at 100 bar, 350 °C, 2 hr

See 2 steps at low T
- both from Mg$_2$NiH$_4$
 or
- Mg$_2$NiH$_4$ + MgH$_2$??

System cycles at ~ 6.5 wt % with some degradation
• LiBH₄/Mg₂NiH₄ appears to have formed upon hydrogenation
• Ternary borides formed upon dehydrogenation; appear to cycle
• Further characterization (FTIR, NMR) required
Possible Reactions

\[4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow \frac{1}{5}\text{Li}_{2.4}\text{Ni}_5\text{B}_4 + 3.52\text{LiH} + 1.6\text{MgB}_2 + 0.4\text{Mg} + 8.3 \text{ wt\% } \text{H}_2 \]
\[4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow \frac{1}{3}\text{MgNi}_3\text{B}_2 + 4\text{LiH} + 1.6\text{MgB}_2 + 8.0 \text{ wt\% } \text{H}_2 \]
\[4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow \frac{1}{7.5}\text{Mg}_3\text{Ni}_{7.5}\text{B}_6 + 4\text{LiH} + 1.6\text{MgB}_2 + 8.0 \text{ wt\% } \text{H}_2 \]

- Three ternary borides have XRD patterns consistent with our observations
- Further work to characterize reaction with NMR is planned
- Suggests computational and experimental efforts to search for other Li(Mg)-transition metal borides
Motivation:

- Scaffolds are effective structure-directing agents for nanoscale hydrides
- Kinetics improved by limiting particle size and diffusion distances
- Thermodynamic changes possible through surface/interface energy effects

Initial work demonstrated feasibility using LiBH₄ incorporated into carbon aerogels (in collaboration with T. Baumann, LLNL)

Current Effort:

- optimize pore size and pore size distribution
- incorporate Mg into aerogels
- incorporate full LiBH₄/MgH₂ destabilized system into aerogel
Dehydrogenation of LiBH₄@Aerogel

LiBH₄ → LiH + B + 1.5H₂

1. Heat to 300 °C in 100 bar H₂
2. Quickly (~1 min) vent/pump H₂
3. Dehydrogenate with P < 0.05 bar

In 13 nm aerogel
12.5 wt% LiBH₄/hr

With graphite
0.2 wt%LiBH₄/hr

Desorbed H₂ (wt % LiBH₄)

Time (hr)

Rate for LiBH₄@aerogel ~60X rate for LiBH₄/graphite control sample
Smaller Pore Size Improves Kinetics

- Rate for 13 nm > 25 nm, indicates influence of pore size
- Relatively slow rate for 4 nm indicates requirement for access

TGA: $\text{LiBH}_4 \rightarrow \text{LiH} + \text{B} + 1.5\text{H}_2 (13.6 \text{ wt }\%)$

Desorbed H_2 (wt % LiBH_4) vs. Time (hr)

Pore size distributions

- 13 nm
- 25 nm
- 4 nm (LLNL)

Pore Volume (cm3/g-nm) vs. Pore Size (nm)
2007 Status: Mg@Carbon Aerogel

- Nickel “wetting layer” enables incorporation of Mg from melt
- However, 900 °C is too high to preserve aerogel structure
- Lower temperatures needed
Lower Temperature Process Improves Mg Encapsulation

- Lower temperature (700 °C vs. 900 °C) reduces aerogel break down
- Cube samples contain bulk Mg impurity

13 nm average pore size (1.3 cm³/g) carbon aerogel

Aerogel with bulk Mg impurity

Ni + Mg (700 °C, 24 hr)

Ni(NO₃)₂ (4%H₂, 500 °C, 6 hr)

TEM (C. C. Ahn, Caltech)

No change in aerogel
Dehydrogenation of MgH$_2$@Aerogel

~10 wt% Mg (700 °C, 24 hr) with Ni@13 nm aerogel

- MgH$_2$ in aerogel can be fully dehydrogenated ✓
- $P_{eq}(250$ °C) equal to bulk value, no change in thermodynamics
Encapsulation Improves MgH₂ Desorption Kinetics

Isothermal desorption at 250 °C (~10 wt% Mg@13 nm aerogel)

- Mg with Ni (700°C)
- Mg with Cu (700°C)
- No wetting layer (~3.3 wt% Mg)

- Ni & Cu wetting layers catalyze dehydrogenation
- Rate without wetting layer still higher than (uncatalyzed) milled MgH₂
1. Gravimetric and Volumetric Penalties
 • Current aerogels:
 • ~ 1 cm3/g for 5 to 10 nm pore sizes
 • up to > 4 cm3/g for pore sizes > 20 nm
 • If kinetic improvements are sufficient, then will need:
 • ~ 5 to 10 nm pore sizes with > 3 cm3/g pore volume

 This is difficult but not impossible (requires thinner scaffold walls which will exacerbate mechanical stability issues)

2. Other issues
 • Chemical stability, i.e., CH$_4$ formation from carbon scaffolds
 • Mechanical stability over multiple cycles? (Note: volume changes during cycling are contained within aerogel particles)

Aerogels are a useful research tool for studying nanoscale effects. Practical use will require advances in the aerogels themselves
Future Work
– FY2007/08 –

New Destabilized Systems

- Further characterize the LiBH$_4$ /Mg$_2$Ni reaction
- Explore oxide-based destabilized reactions
 Ex: $6\text{LiBH}_4 + \text{B}_2\text{O}_3 \rightleftharpoons 3\text{Li}_2\text{O} + 8\text{B} + 12\text{H}_2$ (12.0%)

Nanoporous Scaffolds

- Continue to work towards incorporating full LiBH$_4$/MgH$_2$ destabilized system into carbon aerogel
 - Complete work on Mg incorporation (*evaluate U Hawaii samples*)
 - Add LiBH$_4$ to selected Mg@aerogel samples (*test full system*)
 - Continue to understand effects of pore size and pore size distribution
 - Optimize aerogel materials for pore size and volume
New Destabilized Systems

• Screened new LiBH$_4$/MgX systems, X = Si and Ni
 • Observed new Ni based destabilized system with reversible capacity of ~ 6.5%
 • Observed the formation of ternary borides, pointing to potential new direction of discovery

Nanoporous Scaffolds

• Quantified rates for LiBH$_4$ dehydrogenation in aerogel:
 – at 300 °C, rate in aerogel is 60X rate for control sample
• Incorporated Mg into aerogel at reduced temperature to minimize degradation of aerogel (in progress)
• Measured dehydrogenation rates for Mg@aerogel
 – with Ni wetting layer/catalyst, the rate at 250°C comparable to best catalyzed bulk samples
• Began to understand effects of pore size and pore size distribution
 – smaller pores lower reaction temperatures; hydrogen access is important
Program Direction
– By System –

<table>
<thead>
<tr>
<th>Destabilized System</th>
<th>Benchmark</th>
<th>2007 Status</th>
<th>2007/08 Progress</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiBH₄ / MgH₂ @C aerogel</td>
<td>Could meet 2010 system weight and volume capacity goals (assuming 25% aerogel and 25% system penalties)</td>
<td>Lowered LiBH₄ dehydrogenation temp by 70°C in C-scaffold</td>
<td>•Reduced capacity penalty to 40% •Measured 10x equilibrium pressure •Incorporated Mg into aerogel •Measured > 150x reaction rate</td>
<td>•Incorporate full destab. system in scaffold •Optimize scaffold</td>
</tr>
<tr>
<td>LiBH₄ / Mg₂NiH₄</td>
<td>Could meet 2010 system capacity goal (but only small system penalty)</td>
<td>Reversible capacity of ~6.5% at 350°C Slight degradation observed</td>
<td></td>
<td>Candidate for incorporation into scaffold</td>
</tr>
<tr>
<td>LiBH₄ / MgF₂</td>
<td>Could meet 2010 system capacity goal (but only small system penalty)</td>
<td>Hydrogen uptake ~6.5% at 300-350°C Dehydrogenation 5.3% Not fully reversible</td>
<td></td>
<td>Candidate for incorporation into scaffold</td>
</tr>
<tr>
<td>LiBH₄ / MgS</td>
<td>Could meet 2010 system capacity goal (but only small system penalty)</td>
<td>Hydrogen uptake ~6% at 300°C Dehydrogenation 4.3% Not fully reversible</td>
<td></td>
<td>Candidate for incorporation into scaffold</td>
</tr>
<tr>
<td>Other LiBH₄ / MgX</td>
<td>Could meet 2007 goal (including moderate system penalty)</td>
<td>Sorption meas.: X=CO₃ No destabilization</td>
<td>Sorption meas.: X=Cl, Cu No destabilization</td>
<td>•Test new destab. agents, X=O, OH, Ni •Use nano-engineering to improve kinetics</td>
</tr>
</tbody>
</table>