Cost Implications of Hydrogen Quality Requirements

S. Ahmed, D. Papadias, and R. Kumar
Chemical Sciences and Engineering Division
Argonne National Laboratory

DOE Hydrogen Program Annual Merit Review
May 18-22, 2009, Arlington, VA

Project ID # an_3_ahmed

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: FY 2007
- Project end date: Open
- Percent complete: N/A

Barriers
- B. Stove-Piped/Siloed Analytical Capability
 - Segmented resources
- D. Suite of Models and Tools
 - Macro-system models

Budget
- Funding, FY 07: $200 K
- Funding, FY 08: $350 K
- Funding, FY 09: $200 K

Partners/Collaborators
- Energy Companies (BP, GTI)
- National Laboratories (NREL)
- International
 - Japan Gas Association
 - International Standards Org.
Objective

- Correlate impurity concentrations (in H₂) to the cost of hydrogen, as functions of
 - Process parameters (T, P, S/C, …)
 - Performance measures (H₂ recovery, efficiency)

Approach

- Define hydrogen production processes that can meet hydrogen quality requirements
 - SMR, NG-ATR, Coal Gas (CG) ATR
 - Reformate, syngas purification using PSA
- Model processes to determine sensitivity of process performance to
 - Design and operating parameters
 - P, T, S/C, sorbent, …
- Support data integration into H2A
<table>
<thead>
<tr>
<th>Month-Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 2009</td>
<td>With NREL, incorporate NG-SR-PSA data into H2A
In progress</td>
</tr>
<tr>
<td>Feb. 2009</td>
<td>Define processes to be modeled and analyzed for hydrogen production via coal gasification and water electrolysis
Model set up for coal gas to hydrogen pathway
(some preliminary results presented here)</td>
</tr>
<tr>
<td>Sep. 2009</td>
<td>Establish impurity concentration vs. efficiency correlation for coal derived hydrogen</td>
</tr>
</tbody>
</table>
Schematic of the SMR-PSA system (Base Case)

- **NG Compressor**: NG input at 3 atm, 25 °C.
- **Burner**: Methane (CH₄) input at 925 °C, producing Burner exhaust at 170 °C.
- **Fuel Processor**: Heat input from Burner exhaust.
- **SMR**: Water input (H₂O) at 25 °C, 3 atm, producing SMR tail-gas at 25 °C, 1.34 atm.
- **WGS**: S/C=4 input, producing PSA tail-gas at 25 °C, 1.34 atm.
- **PSA**: H₂ recovered at 25 °C, 1500 kg/day.
- **H₂ recovered**: H₂=76%, CO=2.8%, N₂=0.4%, CH₄=2.8%.
- **Qₜₜₒₜₜ**: (2.5% H₂-LHV) loss.

Inlet Streams:
- NG: CH₄ = 93%, N₂=1.6%.
- Air/Fuel: 275 °C.
- H₂O: (25 °C, Pₚ).

Outlet Streams:
- Burner exhaust: 170 °C.
- Reformate: 170 °C.
- PSA tail-gas: 25 °C, 1.34 atm.
- H₂ recovered: 25 °C.

Additional Notes:
- **Qₜₜₒₜₜ**: (2.5% H₂-LHV) loss.
The model tracks 9 impurities through the system

- Natural gas feed contains He, N₂, S
- Air feeds (ATR, CG) contribute Ar, N₂
- Reformate to PSA contains
 - N₂, CH₄, CO₂, CO, NH₃, H₂S, He, Ar
- The PSA is very effective for removing
 H₂S, NH₃, H₂O, CO₂, CH₄
- Helium is not removed in the PSA
- The product hydrogen from PSA contains trace concentrations of
 He, CO, N₂, Ar, CO₂, CH₄

Diagram:

- SR/ATR/Gasifier
- PSA
- Hydrogen (75%): Ar, He, N₂, NH₃, H₂S, CO, CO₂, CH₄, H₂O
- Hydrogen (99.97%): Ar, He, N₂, CO, CH₄

Graph:

- 3.8 moles H₂ / mole CH₄ from SR
- 70% H₂ Recovery in PSA
- 80% He Recovery in PSA
Base Case: A CO specification of 0.2 ppm limits the H_2 recovery to 74% and the efficiency to ~ 66%
Effect of Pressure

The process efficiency peaks at 10-12 atm

Preliminary Data

- Higher pressures improve impurity adsorption in PSA.
- Higher pressures increase hydrogen loss during PSA bed regeneration.
- Higher pressures reduce hydrogen concentrations in reformer product gas (i.e., PSA feed)

Argonne National Laboratory
Effect of Carbon / Zeolite Proportion:
With increasing zeolite fraction, the limiting species changes from CO to N₂

Preliminary Data
Variations in Natural Gas Composition: Some NG contains much higher concentrations of N_2

<table>
<thead>
<tr>
<th>Species</th>
<th>Mean</th>
<th>10 percentile1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td>93.1</td>
<td>83.9</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>3.2</td>
<td>5.7</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>C4H${10}$</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>N$_2$</td>
<td>1.6</td>
<td>6.1</td>
</tr>
<tr>
<td>O$_2$</td>
<td>0.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

$LHV \ (kJ/mol)$ 817 785

Reformate composition to PSA (%-dry)*

<table>
<thead>
<tr>
<th>Species</th>
<th>Mean</th>
<th>10th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>76.4</td>
<td>75.4</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>17.5</td>
<td>17.7</td>
</tr>
<tr>
<td>CO</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>N$_2$</td>
<td>0.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

*Feed to PSA also includes 100 ppmv H$_2$S

Variations in Natural Gas Composition:
N_2 concentration in product H_2 increases by a factor of ~ 6

![Graph showing variations in natural gas composition](image)

- CO still limits the hydrogen recovery from the PSA

Preliminary Data
Hydrogen cost is a weak function of CO concentration (based on NG price of $7.6 / 1000 ft³ or $7.8 / MMBTU)

Preliminary Data

Effect of S/C

Effect of inlet PSA temperature

Effect of pressure

Effect of Carbon fraction

Argonne National Laboratory
Schematic for a \(\text{H}_2 \) production system using natural gas ATR and PSA

Preliminary Data

- \(S/C = 3.25 \)
- \(S/C_{\text{ATR}} = 1.65 \)
- \(\text{O}_2/C = 0.55 \)
- \(P = 8 \text{ atm} \)
- \(\text{CH}_4: 1.5\% \)
- \(\text{CO}_2: 15.6\% \)
- \(\text{CO}: 1.0\% \) \(P, 25 \degree \text{C} \)
- \(\text{H}_2: 44.4\% \)
- \(\text{N}_2: 37.1\% \)
- \(\text{Ar}: 0.4\% \)

- Burner exhaust 170 \degree \text{C}
- Reformate, 170 \degree \text{C}
- 410 atm
- 1500 kg/day
- \(\text{H}_2 \), \(P, 25 \degree \text{C} \)
- \(P = 8 \text{ atm} \) PSA
- Condenser
- Preparative Data
Natural Gas ATR-PSA:
Nitrogen limits the hydrogen recovery

Concentration, ppm
- **N_2**
 - 0.024 ppm
 - 1300 ppm
- **CO**
 - 0.2 ppm

Efficiency, %
- 42%
- 54%

H$_2$ Recovery, %
- 56%
- 70%

Argon is slightly less than 10 ppm when recovery exceeds 66%.
Schematic for a H_2 production system using coal gasification and PSA

Coal Gasifier → Gas Cleanup & Desulfurization → CO$_2$ Recovery → CO$_2$ Sequestration → PSA → Tail-gas to turbine

Preliminary Data

*Besancon et al. – Air Liquide (2009) Journal of power sources

- H_2: 87.8%
- N_2: 5.0%
- CO$_2$: 3.9%
- CO: 2.6%
- Ar: 0.9%
- CH$_4$: 100 ppm
H₂ from Coal Gasification and PSA: Inerts (nitrogen and argon) limit the hydrogen recovery

Argonne Model
- 4 adiabatic beds, 2 pressure equalizations
- Adsorbent mix: 60% activated carbon (BPL), 40% Zeolite 5A
- Tail-gas pressure: 1.3 bar-a

Air Liquide Model (Besancon, J Power Sources, 34(2009))
- 6 Beds
- Adsorbent mix: unknown
- Tail-gas pressure: 1.3 bar-a
Summary of Technical Accomplishments

- A rigorous model of the PSA system has been set up as part of a flexible systems model (using Comsol Multiphysics and MATLAB)
 - 9 species can be tracked through the system
- The pathway for NG-SR-PSA has been studied over a broad range of design and operating parameters
 - The effect of several design and operating parameters on hydrogen quality and system efficiency has been established
 - Constraint: to meet SAE/ISO guideline values
- The system model results have been correlated with the cost of hydrogen (using H2A)
- Preliminary studies have been conducted for two additional pathways
 - NG-ATR-PSA
 - Coal Gas - PSA
Collaborations

- Presented results to stakeholders at numerous meetings
 - ISO, Conferences, Tech Team
- Participated in modeling workshop with Japan Gas Association, GTI, and BP to validate model with field data
- Working with NREL to collect field data from gas supplier
- Exploring the (confidential) sharing of model results and field data with an energy company and a hydrogen producer (electrolysis)
Conclusions

- The cost of hydrogen is only slightly affected by the impurity specification (guideline) in the NG-SR-PSA system studied.
- CO specification limits the hydrogen recovery for NG-SR for most process conditions:
 - N_2 may become limiting species in a few cases:
 - *When the beds are loaded with high zeolite content*
 - *When the natural gas contains high concentrations of nitrogen*
 - He passes through the NG-SR process:
 - *Emerges at a lower concentration*
- For ATR of NG with PSA purification, Ar or N_2 specification may limit H_2 recovery.
- Similarly, for coal gas reforming followed by PSA, the H_2 recovery may be limited by Ar or N_2.
Future work

- Evaluate the impurity concentrations likely from other hydrogen production pathways
 - ATR, coal gasification, electrolysis
 - Coal gasification processes may be larger, central production plants
- Validate the NG-SR model results with field data
 - Incorporate more complex PSA systems if needed
- Incorporate our model results into H2A
Acknowledgements

This work is funded by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy

Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357