2009
DOE Hydrogen Program
Merit Review Presentation

H,

DOE Hydrogen Program

Advanced Materials for Proton Exchange Membranes

James E. McGrath Donald G. Baird
University Distinguished Prof. of Chemistry Harry C. Wyatt Prof. of Engineering
Macromolecules and Interfaces Institute Dept. of Chemical Engineering (0211)
and Department of Chemistry Virginia Tech
Virginia Tech 128 Randolph Hall
Blacksburg, VA 24061 Blacksburg, VA 2406
Jmcgrath@vt.edu dbaird@vt.edu

FC_ 05 McGrath

This presentation does not contain any proprietary, confidential, or otherwise restricted information




OVERVIEW

Timeline Barriers
*Project Start Date: May 2006 *Conductivity at 120°C and low RH
*Project End Date: March 31,2009

*Percent Complete: 100%(no cost
extension through July)

Budget Partners

Total Project Funding: $950,949 *Los Alamos National Labs
Funding received in FY08: $350,000 | *Giner Electrochemical Systems
Funding received in FY09: $150,949 | *Arkema

*Akron Polymer systems
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Back Row: Rachael VanHouten, Dr. Desmond VanHouten, Harry Lee, Ozma Lane, Dr. Gwangsu Byun
Front Row: Dr. Ruilan Guo, Yu Chen, Prof. James E. McGrath, Dr. Chang Hyun Lee (Missing: Natalie Arn



uel Cell Researc trategles ax 2002

Synthesis (VT), ( Akron Polymer Systems (APS) can Scale Up to Multi-Kilogram Quantities)

Characterization
(McGrath/Moore/Madsen) (VT)

}

Processing
(VT, Baird)

Fuel Cell Testing
(LANL ,DOE/ Bekktech, Arkema, Giner, VT)

'

Sample Films
e DOE LANL and Contractors (Arkema. Giner)




Electrolyte Membrane(PEM); where do we stand after 3

- years2

Low fuel and oxidant permeability
v’ Oxidative and hydrolytic stability
v’ Appropriate water uptake

v Good mechanical properties both in the dry
and hydrated state

v' Low X, y Dimensional Swelling

v' Fabrication into Robust Membrane
Electrode Assemblies (MEAs)

v Cost, Processiblity, Manufacture

v'High protonic conductivity, even at low
relative humidity



Membrane (Nafion®™) in Open Circuit Voltage (OCV) H2/02

« BPSH 02 permeability is 10x lower that A

of PSFA-like membrane - significantly 5
increases durability g
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Long-Term Performance of Interface In
Cooperation with LANL
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Interface optimized non- Nafion®
membrane (6F-35) exhibited stable
long-term performance* with
decreasing cell resistance under
DMFC conditions

Performance loss after 3000 h life test
for 6F-35 was 60 mA/cm?, which was
comparable to that of state of the art
Nafion® MEA.

*2005 technical target for MEA durability
10% loss after 2000 h at < 80°C under
Hy/air conditions



Key monomer
SO,Na




A Scalable (> 2 kg) One Step Synthesis of 3,3'-
Disulfonated 4,4’-Dichlorodiphenylsulfone (SDCDPS)
Comonomer has been Demonstrated

2 SO, (28%) ||
Cl S Cl
i 110 °C ||

Dichlorodiphenyl sulfone

NaO3S
NaCl H,O NaOH NaCl (|)|
> > > > C| S C|
pH = 6-7 I
O

SO,Na
Sulfonated dichlorodiphenyl sulfone

* The starting monomer is produced by Solvay Advanced Polymers
* The only impurity that remains in the comonomer is salt;yield~100%



SDCDPS Purity using UV-Visible Spectroscopy Has
Allowed Copolymer Synthesis using Pilot Plant
Comonomer
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Beer’s Law: A = gbc

A calibration curve was developed using solutions of various known concentrations of

highly purified SDCDPS in methanol

Li, Y.; VanHouten, R.; Brink, A.; McGrath, J.E. Purity Characterization of 3,3’-Disulfonated-4,4’-Dichlorodiphenyl
Sulfone (SDCDPS) Monomer by UV-visible Spectroscopy. Polymer, 2008, 49, 3014-3019.



Disulfonated Poly(arylene ether sulfone) Random (BPS) via

Commercially Viable Direct Copolymerization

NaO3 SO3Na

@ QCI + 1-x ca—Aryl-ct + Ho—Ary|-oH

K,CO4
DMAc/Toluene

=0

O=w

1. 140°C
2.165°C

KOsS o SO;3K
1l
W L%_OEOO Aryl— Aryl—o AryI—O
hydrophlllc hydrophoblc

(bisphenol)
o
At OO« 5 = <040
(activated dihalide) I
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~ Multiblock Copolymers

2 Y - Nanophase-separated morphology can be precisely
7 controlled through synthesis.

i d - Enhanced water diffusion, conductivity and better
mechanical strength with thinner films are possible.

Our Initial work:

SO;H F F F F
? / 0
OO O OO (e
o ! o
A. Noshay and J. E. McGrath, "Block HO;S F FF F
Copolymers: Overview and Critical
Survey,” Academic Press, New York, Hydrophilic segments, provides Hydrophobic segments, imparts
January 1977, p.91.an S-B diblock Flux mechanical integrity
copolymer

Yu, Xiang; Roy, Abhishek; Dunn, Stuart; Yang, Juan; McGrath, James E. Synthesis and characterization of sulfonated-fluorinated,

hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes. Macromolecular Symposia (2006), 245/246(World Polymer
Congress--MACRO 2006), 439-449.
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BisSF-BPSH100 Block Copolymer

Yields Tough Films,
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Storage Modulus [MPa]
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*Acid form; dried for 10 minutes at 180 °C prior to run; 5 °C/min



- Self Assembling Nano-Phase Separated PEM
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BPSH — PI Multiblock Copolymer
QS Lee, JE McGrath et al, J. of Pol. Sci.: 45, 4879 (2007)/

BPSH — BPS Multiblock Copolymer
HS Lee, JE McGrath et al, Polymer, 49 (2008), 715-723

J

TEM Image of BPSH-BPS
(10k-10k) Stained with Cesium

AFM Phase Image of
BPSH-PI (15k-15k)
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BPSH-BPS Multiblock Copolymers with Higher
Block Lengths show Low X.,Y Swelling

Swelling (%)

30 -

HO,S F FF F

I X
Y
N 7

TEM micrograph of BPSH-BPS
(10-10) ion containing multiblock

NRE211 BPSH 35 3-3 5-5 10-10 15-15



Cell Potential (V)

Cell Potential (V)
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Membrane Electrode
Assemblies(MEAs)
were prepared at
LANL, which showed
good performance at
100C and 407%RH




A simpler One Step Synthesis of Segmented Hydrophilic-
Hydrophobic Copoi nas been Definec

A Cres O o O3 O

(Bis-S)
K,CO,
Cyclohexane/NMP
4 hrs @ 85°C
v
F F F F
add ,:,: 36-70 hrs @ 90 °C
FF F F v
(DFBP) Boiling H,SO, (0.5 M), 2h
! Boiling H,0, 2h

+M{HQMMQ#G%

BisSF-BPSH100; (x:y)K,
where x is the theoretical hydrophobic block length and y is the hydrophilic block length (Kg/mole)



Proton Transport Behaviorasa

Function of RH

DOE Target: 100 ms/cm at 50% RH at 120°C
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Proton conductivity [mS/cm]
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olymers wi
ed Conductivity

1. BPSH-BPS (20k-5k), Target IEC = 2.65 meq/g

2. BPSH-6FK (20k-5k), Target IEC = 2.65 meq/g

SOH

O-0-OH-HOLO-OTO

3. HQSH-BPS (15k-5k), Target IEC = 2.83 meq/g
Jﬁ@@@%@@{@@%

The copolymers were acidified and successfully cast on Mylar® (PET) substrates.
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HOOC

Qo@‘é@{oo@? o)

COOH

@)

Acid - terminated Biphenyl Sulfone (BPS)
H
RO
H,N N k) L N N R NH,

Diamine-terminated Polybenzimidazole (PBI)

NMP
200 °C 48hr

~~~~~~~~(Poly arylene ether sulfone);~(Polybenzimidazole) ~~~~~~~~~~~

(mechanical strength) (proton conductivity)



~ Storage Modulus and Tan Delta Shows2

Nanophases for BPS-PBI Copolymers; the
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(S eC ondauctivity - Increasin

100 O

e

-O-PBI15 (12-24-08) 120C
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Conductivity (mS/cm)
o

Conductivity Calculated -
based on dry dimensions
and no swelling
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&
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Acid D | BPS-PBI Meml H Good Tensile Sf '
r Elongations than the Control BPS-PBI Multiblock

and Highe

Tensile Stress [MPa]

Undoped

Y YT Yy s g¥Y oY - ¥

—e— BPS-PBI 10k:10k 33/67 undoped
—e— BPS-PBI 10k:10k 40/60 undoped
—a— BPS-PBI 15k:16k 33/67 undoped
—a— BPS-PBI 15k:156k 40/60 undoped

T T T T )
10 20 30

Strain [%]

Tensile Stress [MPa]

28

—e— BPS-PBI 10k:10k
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33/87
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*Membranes were equilibrated at 25 °C, 40% RH prior to testing. Testing conducted at 25 °C and a rate of 5 mm/min.



(BPS

KO5S

Polybenzimidazole (PBI) Have Been Made
No Phosphoric Ac

~N

[First Systems shows 80 mS/cm at 80C

« BPS100-PBI (20k-10k or 20k-5k) systems are in progress

» Water uptake measurem
Salt Form : 14%

ents were conducted with the copolymer
Acid Form : 21%

Blends of BPSH-100 with the Block Copolymer are being investigated

as acid-base water repla

cement conducting systems

R

~



PolyBlends

Block and Graft Copolymer Blends are Stabilized at the Interface with
Homopolymers

* Block and graft copolymers are usually
“mechanically” compatible with their constituent
homopolymers and the new compositions may

enhance conductivity
“Emulsification”

or

~A e | | Compatibilization

A e is achieved, =1p
A dimensions

possible

B in the blends.




Hydrophilic(BPS100) Hydrophobic(BPS00)

R R At

Hydrophilic : Hydrophobic = 1 : 1 mol ratio

/“20 % molar excess hydrophilic

¢

« The phenoxide groups can react
with a suitable crosslinker

 Tetra epoxy or ethynyl

Crosslinked Block Copolymer



Reactive Groups for High-

Performance Thermosets

Table 2.1 Reactive Groups for High-Performance Thermosets6 |
Functionality Structure | Functionality Name Approximate
Cure Temp. (°C)
(E‘> maleimide 200
_\J
J
0
—OCN cyanate ester 170
:i benzocyclobutene 200
—(C=CH ethynyl 200
9\ nadimide 300
e
310
o
phenylethynyl 350

0 epoxide variable with
. _\ catalyst and co-
CH—CH; reactant
: S styrenyl 200
‘M/’*x\\ |/‘\ biphenylene 300
Puy
‘“”“%[' ey phthalonitrile 250
e SeN
( 3s0

phe11_\'Imaleimil:le“’2

S. J. Mecham, Synthesis and Characterization of Phenylethynyl Terminated
Poly(arylene ether sulfone)s as Thermosetting Structural Adhesives and Composite
Matrices, Ph D thesis, Virginia Tech, Blacksburg, 1997.




EB-BPS-50 Membra
Excellent Thermal S
Acidified After C

t Form)

Dem and Can Be

1107
449 °C
100—_ /
FPEB-BPS-50 blend membrane guu)
shows 5 % weight loss at ~ 449 °C R 90
g 80-:
70;
120
60;3 "~ 100 200 300 400 500 600 700
Temperature (°C)
1004
£ Isothermal heating at 360 °C
2% 4= for 90 min shows no
> significant weight change
60
0H+———" 57—
0

Time (min) 10 °C/min, N, atmosphere



Surface-Fluorination of BPSH PEM
Cooperation with Prof Y. M. Lee and
Colleagues

Chang Hyun Lee!, So Young Lee!, Young Moo
Leel, Ozma Lane?, and James E. McGrath?

ISchool of Chemical Engineering, College of Engineering,
Hanyang University, Seoul, Korea

2Macromolecules and Interface Institute, Virginia
Polytechnic Institute and State University, Blacksburg, VA

24061, USA



Objectiv

« Can surface fluorination effect disulfonated poly(arylene
ether sulfone) (BPSH) copolymer structure, morphology and
membrane properties

« What is the relationship between contact time and
electrochemical properties including long-term fuel cell
MEA performance?



Fluorinatio

* Fluorination: May enhance Morphology and Improve Interfacial behavior with (Nafion®) in the Electrodes

as

H,0S

J 'Il+

SO.H

\ F
F F F F

wn—0

o=

* No modification: poor compatible with catalyst binder (Nafion®) in electrodes

n=—=>0

QO—wn—0
(@)




Develops Morphological Order in

AFM tapping mode phase
images of

(a) SPAES Control

(b) FSPAES 10 minutes
(c) FSPAES 30 minutes
(d)FSPAES-60 minutes

Relative humidity was
{ about 35% RH.
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ases Methanol
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Fl-n improves MEA Performance -
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Figure 8. Electrochemical single cell performances of SPAES membranes under a flow rate of 1M MeOH/O,=1
sccm/200 scecm at 90 °C
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Nonionic Block Copolymers

 Obeys: AG = AH - TAS
« Balance of enthalpic and entropic forces

— Enthalpic: Dissimilar A,B phases want to repulse (positive Flory-
Huggins y parameter, y,;)

Yap = (ZIKT)[€ag- 72( Epnt €pp)]

— Entropic: Linkages between phases prevent macroscopic
separation (elastic restoring force), proportional to chain length
(R), size (a) of N monomers

AG,,...= 3kTR2/ (2Na?)

— Phase separation when y,,N > 10.5 2
highly hydrophobic linkage groups may alter this balance
* Forion-containing copolymers, y,; is largely
unknown

elastic

Noshay A, McGrath JE. Block Copolymers: Overview and Critical Survey. New York: Academic Press, 1977,
[1] Bates FS, Fredrickson GH. Physics Today. 1999, 52(2), 32.
[2] Leibler L. Macromolecules. 1980, 13(6), 1602.



Conclusions: Post Fluorination

» Enhanced single cell performance for BPSH-40
»Probably will work for block copolymers also

v Improved proton conductivity

v'Reduced methanol permeability

> Extended life-time

v'Increase of membrane water-swelling in Z-axis direction
v'Decrease of membrane water-swelling in XY-axis direction
v'Reduced methanol permeation through a membrane

v Improved compatibility between a membrane and catalyst layers
v’ containing Nafion®

(EW=1,100) binder and, , reduced interfacial resistance



Summary

.BPSH Block copolymers were developed

I Many good PEM Characteristics have been
demonstrated

J Oxidative and Hydrolytic Stability, Mechanical
Behavior, low H2 and O2 Permeability, Scalability,
Robust MEA’s, Performance at 100C/ 40% RH

J 100mS/120C/50%RH not yet achieved; An approach
using high IEC Crosslinked Systems in Progress

1 BPSH-PBI blocks/blends can be doped with
H3PO4 or may function per se

JPost Fluorination shows Promise to enhance
Conductivity and to Stabilize the Membrane-Electrode
Interface



Current & Future(April to August,
2009) Research

e Continue ongoing efforts with LANL and others for
understanding chemical structure-processing
property relationships in PEM block and segmented
copolymers and what controls conductivity at low RH

e High IEC (low equivalent weight) crosslinked homo-
and multiblock copolymers

e Post Fluorination of Random and Block Hydrophilic-
Hydrophobic Copolymers
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