Highly Dispersed Alloy Catalyst for Durability

Vivek S. Murthi

UTC Power
A United Technologies Company

May 20, 2009

Project ID: fc_18_murthi

Information included in this presentation is not proprietary or confidential unless otherwise specified
HIGHLY DISPERSED ALLOY CATALYST

Overview

Timeline
• Start – May 1, 2007
• End – April 30, 2010
• 66% Complete

Budget
• Total project funding
 – DOE share - $6.278M
 – Cost share - $2.860M
• DOE Funding for FY08
 – $1,163 K
• DOE Funding received in FY09
 – $2,140 K

Barriers
A. Performance
 • Increase catalyst activity
B. Cost
 • Reduce PGM loading
C. Durability
 • Increase cyclic durability

Partners
• Johnson Matthey Fuel Cells
• Texas A&M University
• Brookhaven National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information
HIGHLY DISPERSED ALLOY CATALYST

Program Objectives

Develop structurally and compositionally advanced cathode catalyst that will meet DOE 2010 targets for performance and durability

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Current Status</th>
<th>DOE 2010 Target</th>
<th>DOE 2015 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt group metal (total content) [g/kW]</td>
<td>0.80</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Pt group metal (total loading) [mg/cm²]</td>
<td>0.64†</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Mass activity @ 900mV [A/mg_{PGM}]</td>
<td>0.28</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Specific activity @ 900mV [mA/cm²]</td>
<td>0.55</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Cyclic durability @ <80°C / >80°C [h]</td>
<td>TBD</td>
<td>5000/2000</td>
<td>5000/5000</td>
</tr>
<tr>
<td>ECA Loss* [%]</td>
<td>30</td>
<td><40</td>
<td><40</td>
</tr>
<tr>
<td>Cost [$/kW]</td>
<td>~38†</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

* Durability data measured after 30K cycles on UTC defined accelerated test protocol.
† Anode/Cathode loading – 0.4/0.24 mg/cm² (PGM).
‡ 5 year average PGM price $ 47.67/g (Pt = $1166.22/Troy Oz; Ir = $ 316.58/troy oz)
HIGHLY DISPERSED ALLOY CATALYST

Technical Contributors

UTC Power Corporation:
Vivek S. Murthi, Elise Izzo, Carmen Perez-Acosta, Wu Bi,
Sathya Motupally, Tom Jarvi

Johnson Matthey Fuel Cells:
Sarah Ball, Rachel O’Malley, Sarah Hudson, Brian Theobald,
Dave Thompsett, Graham Hards

Brookhaven National Lab:
Wei-Ping Zhou, Miomir Vukmirovic, Jia Wang, Dong Su, Yimei Zhu,
Radoslav Adzic

Texas A&M University:
Perla B. Balbuena, Gustavo Ramirez-Caballero, Yuguang Ma,
Rafael Callejas-Tovar, Julibeth Martinez de la Hoz
HIGHLY DISPERSED ALLOY CATALYST

Approach

Core/Shell Catalyst
- Core-shell structure fundamentals
- Synthesis and scale-up chemistries
- Catalyst layer optimization
- MEA fabrication

Alloy Catalyst
- Alloy fundamentals
- Ir-containing ternary alloy formulations
- MEA optimization
- Fuel cell validation
- Full size stack demonstration

Alternate Supports
- Corrosion resistance
- Subscale fuel cell testing

Modeling
- Surface segregation
- Ternary alloy durability
- Core/shell structural stability
- Impact of shell thickness
- Impact of sub-layer composition
HIGHLY DISPERSED ALLOY CATALYST

Overall Strategy

PtIrCo

Structural and composition optimization

Q1, ‘08

0 h

0.0 A/mgPt

Cyclic Durability

PtIrM

PtIrM scale-up and MEA optimization

Q3, ‘08

5000 h

0.44 A/mgPt

Mass activity

PtIrM

Future core shell synthesis optimization

Q3, ‘08

0.88 A/mgPt

2010 Target

PtIrM scale-up and MEA optimization

Q1, ‘08

0.88 A/mgPt

UTC Power
A United Technologies Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information
HIGHLY DISPERSED ALLOY CATALYST

Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2008</td>
<td>Milestone: Synthesis of large scale batch (30 g) of Ir, Pd₃Co and Pd₃Fe cores</td>
</tr>
<tr>
<td>November 2008</td>
<td>Milestone: Synthesis of scaled up (5 g) batch of core/shell catalyst formulations</td>
</tr>
<tr>
<td></td>
<td>Milestone: Bench scale dispersed alloy catalyst formulation down selected</td>
</tr>
<tr>
<td></td>
<td>Go/No-Go decision: Down-selection of dispersed alloy catalyst (complete)</td>
</tr>
<tr>
<td>May 2009</td>
<td>Go/No-Go decision: Down-selection of new durable carbon</td>
</tr>
<tr>
<td></td>
<td>Milestone: Scale-up of down-selected dispersed catalyst</td>
</tr>
<tr>
<td>August 2009</td>
<td>Go/No-Go decision: Down-selection of core/shell catalyst</td>
</tr>
<tr>
<td>September 2009</td>
<td>Go/No-Go decision: UEA optimization of dispersed catalyst for single cell durability test</td>
</tr>
</tbody>
</table>
HIGHLY DISPERSED ALLOY CATALYST

Dispersed Catalyst Down Select Criteria

<table>
<thead>
<tr>
<th>Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Weight factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Activity (A/mgPt)</td>
<td>≤ 0.2</td>
<td>0.2 – 0.3</td>
<td>0.3 – 0.4</td>
<td>0.4 – 0.45</td>
<td>≥ 0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Durability (% ECA loss after 30K cycles)</td>
<td>≥ 40 %</td>
<td>25 - 40 %</td>
<td>10 – 25 %</td>
<td>5 – 10 %</td>
<td>≤ 5%</td>
<td>0.3</td>
</tr>
<tr>
<td>Durability (% MA loss after 30K cycles)</td>
<td>≥ 40 %</td>
<td>25 - 40 %</td>
<td>10 – 25 %</td>
<td>5 – 10 %</td>
<td>≤ 5%</td>
<td>0.2</td>
</tr>
<tr>
<td>PGM Loading (wt% of Non-Pt PGM)</td>
<td>≥ 15 %</td>
<td>10 – 15 %</td>
<td>5 – 10 %</td>
<td>2.5 – 5 %</td>
<td>≤ 2.5 %</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Overall Score = Σ (Weight factor * Rank) †

† Go-No Go decision made after considering the individual ratings

<table>
<thead>
<tr>
<th></th>
<th>Mass Activity (RDE) (A/mgPt)</th>
<th>Durability (% ECA loss after 20 K cycles)</th>
<th>Durability (% MA loss after 20 K cycles)</th>
<th>PGM Loading (wt% of Non-Pt PGM)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE 48 – Pt₂Ir₀.₅Co₁.₅</td>
<td>0.39</td>
<td>1 %</td>
<td>48 %</td>
<td>6 %</td>
<td>3.2</td>
</tr>
<tr>
<td>DOE 52 – Pt₂IrCr</td>
<td>0.45</td>
<td>9 %</td>
<td>49 %</td>
<td>11 %</td>
<td>3.2</td>
</tr>
</tbody>
</table>
driving forces for surface segregation:

- large atomic size
- low surface energy
- small heat of alloy formation

- d-band center shows Pt$_2$IrCr Alloys less reactive than Pt$_3$Cr alloys
- Potential shift for Pt \rightarrow Pt$^{2+}$ shows that Pt$_2$IrCr more stable

For the non-segregated surface, the potential shift is positive, indicating that the Pt atoms on that surface have less tendency to dissolve than on pure Pt(111)
HIGHLY DISPERSED ALLOY CATALYST

Technical Accomplishments – Subscale MEA

UTC Accelerated Protocol

- Ir prevents transition metal leaching and Pt dissolution
- Cr has added benefits in MEA
 - low Fluoride Emission Rates
 - higher oxide stability
- Pt$_2$IrCr gave best durability in both RDE and MEA cycling
HIGHLY DISPERSED ALLOY CATALYST
Down-selected PtIrM/C Alloys

RDE potential cycling 0.4-0.95V, 10:10s, RT

Stable ECA after particle reaches 4-5 nm

30% Pt₆IrCo₇ (DOE 59-1)
- Higher initial Mass Activity
- Stable ECA ~70 m²/gₚt
- Currently optimizing heat treatment impact for trade-off of performance and durability

Final MA = 0.4 A/mgₚt

UTC Power
A United Technologies Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information
HIGHLY DISPERSED ALLOY CATALYST
JM Scale-up: 30% Pt$_2$Ir$_{0.5}$Co$_{1.5}$ and 30% Pt$_2$IrCr

Pt$_2$Ir$_{0.5}$Co$_{1.5}$ (DOE 48)
Mass activity of scale up batch in RDE similar to lab scale synthesis

Pt$_2$IrCr (DOE 52)
Initial preparation attempt (batch 1) showed multi phased particles; second attempt successful; optimization of synthesis procedure in progress
HIGHLY DISPERSED ALLOY CATALYST

Pd₃Co/Ptₘₐₙₐₜ - JM Scale-up

0.25 monolayer of oxygen

<table>
<thead>
<tr>
<th>System</th>
<th>μₚₜ (eV)</th>
<th>Δμ (eV)</th>
<th>ΔU (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt (0 ML)</td>
<td>-6.98</td>
<td>-0.72</td>
<td>0.36</td>
</tr>
<tr>
<td>Pt (0.25ML)*</td>
<td>-6.26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pt(shell)-Pd(core)</td>
<td>-6.42</td>
<td>-0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Pt(shell)-Pt₃Co</td>
<td>CVT1</td>
<td>-6.46</td>
<td>-0.20</td>
</tr>
<tr>
<td>(core)</td>
<td>CVT2</td>
<td>-6.46</td>
<td>-0.20</td>
</tr>
<tr>
<td>Pt(shell)-Pt₃Fe</td>
<td>CVT1</td>
<td>-4.88</td>
<td>1.38</td>
</tr>
<tr>
<td>(core)</td>
<td>CVT2</td>
<td>-6.49</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

Pt becomes less stable compared with in vacuum; Pd and Pd₃Co cores can increase Pt stability

Durability to potential cycling

After 6500 cycles

- ΔE₁/₂ ≈ -13 mV
- 30 % loss in mass activity (at 0.9 V)
- 53 % loss in ECSA
- 25 % increase in specific activity

Durability

At 0.9 V vs. RHE after 6500 cycles, initial activity is 0.11 mA cm⁻², while after 6500 cycles, it is 0.09 mA cm⁻².
After potential cycling

1. Decrease in particle size of Pd₃Co core
2. Particle density (TEM) decreases significantly
3. Pt layer seems to grow preferentially on one side of the particles
HIGHLY DISPERSED ALLOY CATALYST
Pd₃Co/Pt₂ML Core/Shell Stability

Voltammetry curves for Pt₂ML/Pd₃Co/C in 0.1 M HClO₄ after potential cycles (0.6 – 0.95 V square wave with 30 sec pulse); RT

ORR curves for Pt₂ML/Pd₃Co/C in 0.1 M HClO₄ at 1600rpm after potential cycling. Scan rate: 10 mV/s; RT

Potential shift with different Pt shell thickness – in vacuum

<table>
<thead>
<tr>
<th>ΔU (V)</th>
<th>1 layer</th>
<th>2 layers</th>
<th>3 layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(shell)-Co(core)</td>
<td>-0.54</td>
<td>-0.56</td>
<td>-1.95</td>
</tr>
<tr>
<td>Pt(shell)-Fe(core)</td>
<td>-1.10</td>
<td>-1.05</td>
<td>-2.79</td>
</tr>
<tr>
<td>Pt(shell)-Pd(core)</td>
<td>0.20</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Pt(shell)-Pd₃Co(core)</td>
<td>0.21</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Pt(shell)-Pd₂Fe(core)</td>
<td>-0.51</td>
<td>0.08</td>
<td>0.07</td>
</tr>
</tbody>
</table>

In vacuum
Monolayer Pt leads to highest stability for Pd and Pd₃Co core

- Pt₂ML/Pd₃Co synthesized with mediated growth method (100 mg JM batch) shows improved stability
- The total surface area loss was ~ 40% after 13,000 cycles while the ORR specific activity at 0.9 V was increased by ~ 80%
HIGHERLY DISPERSED ALLOY CATALYST

Pd$_3$Co/Pt$_{\text{ML}}$ - Activity in MEA’s

All core shell catalysts show enhancement over Pt only
Best mass activity Pt$_{\text{ML}}$/Ir core shell
Pt$_{\text{ML}}$/Pd$_3$Co and Pt$_{\text{ML}}$/Pd$_3$Fe show equivalent performance

49 cm2 active area MEAs, H_2/O_2 stoich 2/10, 80°C, 150 kPa$_{\text{abs}}$, 100% RH
HIGHLY DISPERSED ALLOY CATALYST

Future Work

- FY 2009
 - **Dispersed Alloy Catalyst**
 - Fundamental study on heat treatment process to improve activity and durability
 - Fundamental effect of Ir-containing alloys on durability benefit
 - **Core/Shell Catalyst**
 - Explore new core materials based on modeling results
 - New chemistries to obtain uniform Pt coating with improved mass activity
 - **Carbon support**
 - Liquid cell corrosion testing to down-select more durable carbon support
 - Optimize synthesis to maximize activity

- FY 2010
 - **Dispersed Alloy Catalyst**
 - Validate selected catalysts in a single-cell fuel cell under new DOE protocol
 - Stack verification of selected catalysts
 - **Core/Shell Catalyst**
 - Down-select, scale-up and optimize MEA layer
 - Full size (400cm²) single cell verification
 - **Carbon support**
 - Verification of down-selected carbon in sub-scale MEA
HIGHLY DISPERSED ALLOY CATALYST
Project Summary

• **Relevance:** Work to develop a more active and durable catalyst that meets and surpasses the DOE 2010 targets for performance and durability in real-life conditions in a 20-cell stack test.

• **Approach:** Complete fundamental modeling and experimental studies that elucidate how the structure of a catalyst and its support behave during synthesis, processing and operation.

• **Technical Accomplishments and Progress:** Demonstrated catalyst mass activities that surpass the DOE 2010 target for dispersed catalysts ($\geq 0.7 \text{ A/mg}_{\text{PGM}}$) in RDE testing. Reproduced mass activities of almost $0.3 \text{ A/mg}_{\text{PGM}}$ for our down-selected catalyst in both RDE and subscale MEA testing (3X a standard Pt only catalyst). Scaled-up a core-shell catalyst to a 5g batch. Began work on optimizing the catalyst layer for full-scale MEA testing.

• **Technology Transfer/Collaborations:** Active partnerships with Johnson Matthey Fuel Cells, Brookhaven National Laboratory, and Texas A&M University with the ultimate goal to develop a more active and durable catalyst through team meetings, presentations and publications.

• **Proposed Future Research:** Continue to experimentally verify the modeling data for core-shell stability and activity benefits of dispersed alloys. Use modeling to investigate stable non-PGM cores for core-shell catalyst systems.
Supplemental Slides
This presentation does not contain any proprietary, confidential, or otherwise restricted information.