D.O.E. Program Review

Modular, High-Volume Fuel Cell Leak-Test Suite and Process

Ian Kaye, Ru Chen, Matt Mendez
UltraCell Corporation

Peter Rieke, Dale King
Pacific Northwest National Laboratory

Gordon Splete
Cincinnati Test Systems

May 20, 2009

Project ID # mf_03_kaye

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Introduction to UltraCell

- Founded 2002

- Mission
 - To provide compact and portable grid-independent power to the global market

- Core Technology
 - Reformed Methanol Fuel Cells (RMFC)
 - Originally invented at the U. S. Department of Energy's Lawrence Livermore National Laboratory (LLNL).

- Locations
 - Livermore, CA (HQ), Vandalia, Ohio (Manufacturing)

- Existing product line
 - XX25 fuel cell
 - XX55 fuel cell
 - Various fuel tanks and accessories
Implementation of this project’s goals will be implemented in our current/future product line

- XX25: currently produced in low volume at our Dayton plant.

- XX55: Currently limited availability. Will be produced in Dayton.

The technology developed under this project will be installed in our plant and go right into our existing product like for reduced costs and faster production rates.
Why is this project important?

- There is an acute, demonstrated and mission critical weight problem with current battery technologies that can be addressed by our technology.
- 20W mission for 72-hrs benchmark shows great potential for the XX25 architecture.
- Getting more units, faster and with greater reliability to the field is critical.

Group II Lead Acid

Energy density = 36 Whr/Kg
72 hr mission wt. = 40 Kg (88 lb)

BA-2590 (Primary Lithium)

Energy density = 221 Whr/Kg
72 hr mission wt. = 6.5 Kg (14.3 lb)

BA-2590 (Li-ion)

Energy density = 130 Whr/Kg
72 hr mission wt. = 12.2 Kg (27.1 lb)

XX25™

Energy density = 360 Whr/Kg
72 hr mission wt. = 4.0 Kg (8.8 lb)
Overview

Timeline
- Start: 09/01/2008
- End: 08/31/2011
- 20% complete

Budget
- Total project funding
 - DOE $2,411,888
 - Contractor $2,281,603
- Funding for FY09
 - $1,661,881

Barriers
F: Low levels of Quality Control and inflexible processes

Partners
- UltraCell – Project lead
- PNNL – Fuel cell stack properties, method selection, quality metrics
- CTS – Leak-test suite design, fabrication, and installation
• A fuel cell is an excellent leak-sensor: we plan to use the manufactured part as part of the sensor network

• Project Objectives
 – Design a modular, high-volume fuel cell leak-test suite capable of testing in excess of 100,000 fuel cell stack per year (i.e., 50 fuel cell stacks per hour).
 – Perform leak tests inline during assembly and break-in steps
 – Demonstrate fuel cell stack yield rate to 95%.
 – Reduce labor content to 6 min.
 – Reduce fuel cell stack manufacturing cost by 80%.

• Project Phases
 – Phase I: focus on analysis of manufacturing process, stack failure modes, leak-test methods; prototype design and fabrication; leak test suite design.
 – Phase II: pilot production line modification; leak-test suit fabrication, integration, and verification; limited production test run.
Milestones - Relevance

- **9/1/2008 - 2/28/2010**: Phase I: Selection and Design of Leak-Detection Methods
- **1/1/2009**: Demonstrate leak check accuracy
- **11/1/2009**: GoNo-Go: Flexo-Tiltometer
- **11/1/2009**: Complete design review pkg
- **12/3/2008**: Project Kick-Off
- **7/31/2009**: GoNo-Go: 50 pph throughput
- **2/28/2010**: Achieve 5 pph capacity
- **6/30/2011**: Production line test run
- **8/31/2011**: Achieve 50 pph capacity

- **2/28/2010 - 8/31/2011**: Phase II: Fabrication of fuel cell high volume manufacturing leak test suite
Features

- Modular structure
- High throughput
- Inline leak test
- Automation
- Diagnostics

- Add software/hardware mods to existing “test boxes”
1. Crossover Current test

2. Flexo-Tiltometer

3. Current Interrupt

4. Voltage Decay

5. Pressure/Vacuum Decay

6. Fuel Cell Sensor for Coolant Leak
• **Milestones (FY09)**
 – 11/08 Manufacturing process analysis
 – 07/09 Demonstrate leak check accuracy
 – 07/09 Go/No-Go: Flexo-Tiltometer accuracy
 – 11/09 Complete design review package
 – 02/10 Achieve 5 pph capacity on prototype leak test suite
 – 02/10 Go/No-Go: 50 pph throughput

• **Progress**
 – Analyzed fuel cell stack manufacturing process procedure, throughput time, labor time, yield, failure modes
 – Investigated leak-test methods
 – Investigated fuel cell stack components
 – Created specification for leak-test suite lab prototype
 – Started design leak-test suite lab prototype
Technical Accomplishments

Crossover Current Test

- Fuel cell with crossover shows higher current
- Sensitivity depends on Nitrogen flow on cathode side
Technical Accomplishments

Current Interrupt

Voltage Decay

- Fuel cell with crossover shows lower OCV and fast decay
- Fuel cell with crossover shows lower voltage and OCV
Stack Dynamic Mechanical Analysis

Objective: Understand how DMA techniques can be used to probe pressure distributions, aid in stack assembly protocols, decrease break-in times and identify causes of leaks.

The “Flexo-Tiltometer”

- Final static assembly pressure should assure
 - Seal integrity
 - Good electrical contact
 - Correct compression of all components

- Static Stress Scans of stack probes only most compressible component.

- Difficult to determine what final assembly pressure should be.
Creep & Recovery

- Slow reversible and irreversible dimensional changes.
- GDLs have both irreversible and progressive “crush” and a reversible elastic compression.
- Gasket A shows an initial irreversible compression followed by reversible but slow elastic compression and recovery.
- When should stack be “Bolted”?

Technical Accomplishments
Dynamic Temperature Scans

- Low temperature relaxation at 30 °C
 Probably due to flattening of wrinkles

- Features at ~140 °C correlate with glass transition temperature for this material.

- Dynamic pressure oscillations during assembly can help reveal force distributions during stack assembly.
Collaborations

- **UltraCell Corporation**
 Project lead.
 Leading producer of fuel cell systems for remote or mobile devices.

- **Pacific Northwest National Laboratory**
 Stack properties, method selection, quality metrics

- **Cincinnati Test Systems**
 Leak-test suite design, fabrication, and installation

- **Invotec Engineering, Inc.**
 Design, fabrication, and installation of fuel cell stack robotic manufacturing system

- **Mound Technical Solutions, Inc.**
 Design and fabrication of fuel cell performance test fixture and automated test data analysis
Future Work

FY09
• Design and fabricate leak-test suite lab prototype with 5 pph capacity
• Test lab prototype
• Generate stack quality metrics
• Design leak-test suite with 50 pph capacity

FY10
• Fabricate leak-test suite
• Modify pilot production line to accommodate leak test suite
• Integrate leak-test suite
Summary

• Objectives
 – Design a modular, high-volume fuel cell leak-test suite capable of testing in excess of 100,000 fuel cell stack per year (i.e., 50 fuel cell stacks per hour).
 – Perform leak tests inline during assembly and break-in steps

• Progress
 – Analyzed fuel cell stack manufacturing process
 – Investigated leak-test methods
 – Investigated fuel cell stack components
 – Created specification for leak-test suite lab prototype
 – Started design leak-test suite lab prototype

• Future Work
 – Design and fabricate leak-test suite lab prototype with 5 pph capacity
 – Test lab prototype and generate stack quality metrics
 – Design and fabricate leak-test suite with 50 pph capacity