Development of Robust Metal Membranes for Hydrogen Separation

Dr. Bryan D. Morreale
Reaction Chemistry & Engineering Research Group Leader
Office of Research & Development, NETL

2009 DOE Hydrogen Program Review
Reaction Chemistry & Engineering

Group Members

U.S. DOE - NETL
- Dr. Bryan Morreale
- Dr. Bret Howard
- Dr. Dirk Link
- Dr. Charles Taylor

NETL Research Faculty
- Dr. Andrew Gellman, CMU
- Dr. James Miller, CMU
- Dr. Robert Enick, PITT
- Dr. Goetz Vesser, PITT
- Dr. Sittichai Natesakhawat, PITT

NETL Site Support Contractors
- Dr. Mike Ciocco, Parsons
- Dr. Sonia Hammache, Parsons
- Paul Zandhuis, Parsons
- Nick Means, Parsons
- Technical staff, Parsons
Overview

Timeline
• Project start date: 10/1/2008
• Project end date: 9/30/2009
• Percent complete: 67%

Budget
• FY09 Funding: $746k
• FY08 Funding: $1,000k
• FY07 Funding: $1,230k

Barriers\(^{(1)}\)
• (G) H\(_2\) Embrittlement
• (H) Thermal cycling
• (I) Poisoning of catalytic surface
• (J) Loss of structural integrity and performance

Partners
• Carnegie Mellon University
• University of Pittsburgh
• Gas Technology Institute
• REB Research
• Los Alamos National Lab.
• NETL Computational Chemistry

\(^{(1)}\) 2008 Hydrogen from Coal Program: Research, Development and Demonstration Plan
Background

(Relevance)

• Overall goal
 – Development of robust dense metal, hydrogen separation membranes for integration into coal conversion processes

• Studies suggest that incorporating separation membranes into coal conversion processes can reduce costs by...
Facilities & Capabilities

• Reactor Systems
 – Reactor and separation configurations
 • Continuous or batch
 – Major and minor syngas constituents
 – T to 1000°C, P to 1000 psi

• Fabrication Lab
 – Depositions chamber
 – Vacuum arc-melter
 – Micro-welder
 – High-T box and annealing ovens

• Characterization Instruments
 – UHV chambers
 • Gradient doser, AES, XPS, LEIS, TPD, PVD
 – XRD w/hot-stage
 – SEM w/EDS
 – TGA for use with H₂S
Outline

Task 1: H₂ Membrane Test Protocol
Task 2: PdCu System
Task 3: Robust Metal Membrane Development

• Objective
• Approach
• Technical Accomplishments
• Collaborations
• Proposed Future Work
Task 1: H_2 Membrane Test Protocol

• **Objective**
 - Define a H_2-membrane test protocol that
 • will advance the technology towards application to coal conversion processes
 • is consistent with overall FE program metrics, and
 • yields a basis for an “apples-to-apples” comparison

• **Approach**
 - Apply understanding of engineering principles, membrane technology and coal conversion processes to define a sequential protocol

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Units</th>
<th>2007 Target</th>
<th>2010 Target</th>
<th>2015 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux (a)</td>
<td>scm/cm2</td>
<td>51</td>
<td>102</td>
<td>152.4</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>400–700</td>
<td>300–600</td>
<td>250–500</td>
</tr>
<tr>
<td>S Tolerance</td>
<td>ppmv</td>
<td>---</td>
<td>20</td>
<td>>100</td>
</tr>
<tr>
<td>Cost</td>
<td>$/ft^2$</td>
<td>150</td>
<td>100</td>
<td><100</td>
</tr>
<tr>
<td>WGS Activity</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>?P Operating Capability (b)</td>
<td>psi</td>
<td>100</td>
<td>Up to 400</td>
<td>Up to 800 to 1,000</td>
</tr>
<tr>
<td>Carbon Monoxide Tolerance</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hydrogen Purity</td>
<td>%</td>
<td>95%</td>
<td>99.5%</td>
<td>99.99%</td>
</tr>
<tr>
<td>Stability/Durability</td>
<td>years</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

* a For 100 psi ΔP (hydrogen partial pressure basis)
 b $\Delta P = $ total pressure differential across the membrane reactor
Task 1: H₂ Membrane Test Protocol

(Technical Accomplishments)

- Completed a survey to determine the effluent composition of a WGS unit

- Developed COMSOL model to predict the influence of WGS reaction and/or H₂ removal on overall gas composition

- Identified the test conditions and gas compositions that are relevant to syngas conversion flowsheet options:
 - **Test 1**: Shifted syngas, with no sulfur
 - **Test 2a**: Shifted syngas with 20 ppm H₂S
 - **Test 2b**: Shifted syngas with ~50% H₂ removal
 - **Test 2c**: Shifted syngas with ~90% H₂ removal

<table>
<thead>
<tr>
<th>Component</th>
<th>Test 1</th>
<th>Test 2a</th>
<th>Test 2b</th>
<th>Test 2c</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>50%</td>
<td>50%</td>
<td>33%</td>
<td>5%</td>
</tr>
<tr>
<td>CO</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>CO₂</td>
<td>30%</td>
<td>30%</td>
<td>40%</td>
<td>57%</td>
</tr>
<tr>
<td>H₂O</td>
<td>19%</td>
<td>19%</td>
<td>25%</td>
<td>36%</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.0%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

- Temp: 300-600°C
- P_{Ref}: 200 psi atm
Task 1: H₂ Membrane Test Protocol

(Collaborations)

• NETL Technology Manager and Technology Team
 – The development of the test protocol was a team effort consisting of several participants of the Technology Team

• NETL funded H₂ Separation Projects
 – Provide unbiased performance verification testing
 • REB Research
 • ORNL
 • Eltron Research
 • WRI
Task 1: H_2 Membrane Test Protocol

(*Proposed Future Work*)

- Continue to support the development of test protocols to include more “commercially relevant” conditions
 - Higher transmembrane pressure differentials
 - Contaminants other than H_2S
 - For example, Cl and N for biomass co-feed
 - Integration of WGS reactor and Membrane separator
 - (WGSMR)
Task 2: PdCu System

• Objective
 – Complete a comprehensive performance evaluation of the PdCu system at conditions consistent with coal conversion processes

• The intent of the study is to
 – gain a fundamental understanding of the PdCu system
 – address discrepancies observed in literature
 – develop property-performance relationships
 – provide design guidance for fabrication of membranes at commercial scales and thicknesses

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Units</th>
<th>2007 Target</th>
<th>2010 Target</th>
<th>2015 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux (a)</td>
<td>scm/cm²</td>
<td>51</td>
<td>102</td>
<td>152.4</td>
</tr>
<tr>
<td>Temperature</td>
<td>ºC</td>
<td>400–700</td>
<td>300–600</td>
<td>250–500</td>
</tr>
<tr>
<td>S Tolerance</td>
<td>ppmv</td>
<td>---</td>
<td>20</td>
<td>>100</td>
</tr>
<tr>
<td>Cost</td>
<td>$/ft²</td>
<td>150</td>
<td>100</td>
<td><100</td>
</tr>
<tr>
<td>WGS Activity</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>?P Operating Capability (b)</td>
<td>psi</td>
<td>100</td>
<td>Up to 400</td>
<td>Up to 800 to 1,000</td>
</tr>
<tr>
<td>Carbon Monoxide Tolerance</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hydrogen Purity</td>
<td>%</td>
<td>95%</td>
<td>99.5%</td>
<td>99.99%</td>
</tr>
<tr>
<td>Stability/Durability</td>
<td>years</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) For 100 psi ΔP (hydrogen partial pressure basis)
(b) ΔP = total pressure differential across the membrane reactor
Task 2: PdCu System

(Approach)

- Utilize several PdCu compositions
 - 100, 80, 60, 53wt%Pd-Cu
- Fabricated by “cold rolling” techniques
- Membrane thickness was generally ~100 μm
 - Ease of operation and minimize failures
- Temperatures consistent with post gasification and allowed variation in crystalline structure
 - 350, 450 and 635°C
- Sour gas studies
 - 8hrs in clean 10%He-H2 (baseline)
 - 120hrs in 0.1%H2S-10%He-H2

Task 2: PdCu System

(Technical Accomplishments)

- Completed evaluation of hydrogen permeability of Pd and PdCu
 - 60Pd-Cu exhibits the highest permeability at temperatures below ~500°C, corresponding to a B2 crystalline structure.
 - 80Pd-Cu exhibits the highest permeability at temperatures above ~500°C, corresponding to a fcc crystalline structure.
 - In general, Pd-Cu permeability increases with increasing Pd content.
Task 2: PdCu System

(Technical Accomplishments)

- Completed evaluation of Pd and PdCu alloys in presence of H₂S
 - Catalytic poisoning: Immediate decrease: no significant surface scale
 - 60Pd-Cu, 53Pd-Cu
 - Corrosive decay: Gradual decrease: significant surface scale
 - Pd, 80Pd-Cu
 - No change in performance upon the introduction of H₂S: no surface scale.
 - 80Pd-Cu, 60Pd-Cu, 53Pd-Cu at T>450°C

“Catalytic poisoning”

“Corrosive decay”
Task 2: PdCu System
(Technical Accomplishments)

- Reported the first ever permeability of Pd₄S using both experimental and computational techniques
 - Approach can be used for developing new membrane systems
- Pd₄S permeability is ~1/10 Pd permeability
Task 2: PdCu System
(Collaborations)

• The research team conducting the work on the PdCu system consisted of participants from local universities
 – University of Pittsburgh
 • Provided technical support
 • Performance testing of the membranes
 • Membrane characterization
 – Georgia Institute of Technology
 • Utilized computational method to predict the first reported permeability of palladium-sulfide
Task 2: PdCu System

(Proposed Future Work)

• Characterization of the PdCu system in clean and \(\text{H}_2\text{S} \)-contaminated environments has been successfully completed

• No additional work specific to PdCu is planned

• The results of our work with PdCu will help set the direction of future Robust Metal Membrane Development (Task 3):
 – how to think about and characterize interaction of sulfur with multicomponent materials, like alloys
 – alloys’ contribution to corrosion resistance
 – the role of minor components in imparting sulfur tolerance to metal membrane systems
Task 3: Robust Metal Membrane Development

• Identify membrane compositions and configurations that meet the criteria outlined in FE H₂ from Coal RD&D plan per the NETL Membrane Test Protocol

• Provide design guidance to collaborators who will fabricate membranes at commercial scales and thicknesses

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Units</th>
<th>2007 Target</th>
<th>2010 Target</th>
<th>2015 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux (a)</td>
<td>vccm/m²m²</td>
<td>51</td>
<td>102</td>
<td>152.4</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>400–700</td>
<td>300–600</td>
<td>250–500</td>
</tr>
<tr>
<td>S Tolerance</td>
<td>ppmv</td>
<td>----</td>
<td>20</td>
<td>>100</td>
</tr>
<tr>
<td>Cost</td>
<td>$/ft²</td>
<td>150</td>
<td>100</td>
<td><100</td>
</tr>
</tbody>
</table>

WGS Activity		Yes	Yes	Yes
7F Operating			Up to 400	Up to 800
Capability (b)	psi	100		1,000
Carbon Monoxide		Yes	Yes	Yes
Tolerance				
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

(a) For 100 psi ΔP (hydrogen partial pressure basis)
(b) ΔP = total pressure differential across the membrane reactor
Task 3: Robust Metal Membrane Development

(Approach)

- Building on the PdCu foundation, apply fundamental and applied science to engineer membrane alloys and composites suitable for coal conversion processes
 - Corrosion resistance
 - fundamental thermodynamics,
 - gravimetric analysis
 - Surface activity
 - H_2/D_2 exchange
 - computational studies
 - H_2-transport
Task 3: Robust Metal Membrane Development

(Technical Accomplishments)

• Provisional Patent Filed:
 “Sulfur Induced H₂-Membrane”
 – Concept: Use B2-structured Pd-Cu alloy as sulfide corrosion barrier in multilayered membrane structure
 – Utilize “S-based surface catalyst” to provide atomic hydrogen for transport

• New capabilities developed
 – Preparation and characterization of H-atom transport through multi-layer structures in UHV
 – Preparation and characterization of catalytic-sulfide top-layers for multi-layer structures
Task 3: Robust Metal Membrane Development

(Technical Accomplishments)

• Several binary and tertiary metallic systems have been fabricated and screened
 – Pd-Ag, Au, Co, Cu, Ni, Pt
• PdPt alloy has shown significant promise for S-tolerance
Task 3: Robust Metal Membrane Development

(Collaborations)

• The research team conducting the work on the task consisted of participants from institutions
 – Carnegie Mellon University
 • Provided technical support
 • Assisted performance testing of the membranes
 • Utilize UHV techniques to evaluate the energetics associated with H₂ activation on metal and sulfide surfaces.
 – NETL Computational Research Group
 • Provide fundamental computational studies evaluating the energetics associated with H₂ activation on metal and sulfide surfaces.
Task 3: Robust Metal Membrane Development

(Proposed Future Work)

- Characterize H-atom transport across interfaces buried within multi-layer structures
- Develop options for sulfur-resistant top-layers and corrosion-resistant intermediate layers for layered structures
- Continue evaluation of binary and higher alloys for use alone or as functional layers in multi-component structures
- Provide design input to partners who fabricate membranes for practical implementation
Summary

• A test protocol has been developed that allows technological progression and comparisons for application to coal conversion processes

• A comprehensive study of the PdCu system has been completed
 – Conditions of complete S-tolerance have been identified.
 – Corrosion/catalytic phenomena has been identified and will be used for further membrane development

• Several alloy compositions have been fabricated and screened for performance
 – Some alloys have shown potential for S-tolerance