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LANL Project Overview

—

Timeline Barriers
* Project Start Date:FYO7 * Barriers Addressed
* Project End Date: FYOS8 * Feedstock Cost and
* Percent Complete: 100% Availability

* Capital Cost and Efficiency of
Biomass Gasification/Pyrolysis
Budget Technology
* Total Project Funding: 500K
* Project End Date: FY2008
* Funding:
«2007: $S200K Partners
*2008: S300K * None
*2009: SOK*

a *EERE Hydrogen Production and Delivery Budget Zeroed Out
)
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LANL Project Objectives

Project Objective

Develop novel low temperature chemical routes and catalysts to
produce hydrogen/syngas from lignocellulosic feedstocks

Target: By 2012, reduce the cost of hydrogen produced from biomass gasification to
$1.60/gge at the plant gate (<$3.30/gge delivered). By 2017, reduce the cost of hydrogen
produced from biomass gasification to $1.10/gge at the plant gate (52.10/gge delivered).

The most abundant constituent of biomass is lignocellulosic (~80%). Discovering
new chemistries and catalysts that can convert lignocellulosic into
hydrogen/syngas will be critical if biomass is to be used as a feedstock for
hydrogen or other alternative fuels.

Lignocellulosic depolymerization/decomposition is the most process intensive

l{__\and most challenging) constituent of biomass to convert to hydrogen/syngas
- Los Alamos
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LANL Project Milestones

Milestones: Catalytic Solubilization and Conversion of
Lignocellulosic Feedstocks
FYO7 FY0O8
(200K) (300K)
Cellulosics conversion to syngas mechanism i
Lignin solubilization and conversion .
Cellulose solubilization/depolymerization I
Preliminary study of reduced intensity lignin gasification F
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LANL Project Approach

In general terms, LANL is in search of novel hydrogen/syngas production routes from
lignocellulosics. Two approaches will be explored:

» Catalytic solubilization of lignocellulosics to generate a sugar feedstock stream for
downstream APR, and
* Solubilization of lignocellulosics followed by APRxn of oligomeric, soluble cellulose.

LANL will conduct screening experiments for evidence of direct aqueous-phase low-
temperature reforming of lignocellulosics to hydrogen/syngas through the use of catalysts
designed to cleave carbon-carbon bonds of the cellulose backbone. Tandem catalysis
approaches, where two catalysts or processes are linked together in a single reaction vessel,
will be explored to demonstrate “one-pot” cellulose solubilization followed by aqueous phase
catalytic reforming to generate hydrogen. This is important in that if catalysts can be found
that will generate hydrogen directly from soluble cellulose oligomers, this provides a ‘one-pot’
approach and offers increased utilization of residual biomass, increased efficiency and the
potential for cost reductions both in feedstock and in capital equipment. LANL's approach to
producing hydrogen from lignocellulosics (i.e., middle and bottom routes) is represented by
the chemical routes shown in Figure 1 (next slide).
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LANL Project Approach (cont’d, Figure 1)

Carbohydrates = ———  Ethanol
(soluble)

CeIIqusedigeStion Oligomer Monomer
(insoluble) —» Solution —» Solution
(Cellobiose) (Glucose)
> Bio-Syngas
A
Lignin Oligomer Mogﬁca;r)ner
(insoluble) Solution Solution

Figure 1. A rudimentary diagram showing LANL's approach to producing bio-syngas (i.e, hydrogen and carbon
monoxide) from lignocellulosics
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LANL Technical Accomplishments and Progress

Accomplishments

* Demonstrated heterogeneous catalyzed hydrolysis of cellobiose
to glucose.

* Demonstrated the conversion of cellobiose to syngas [albeit at
low conversions (~5%)]

* Demonstrated catalytically enhanced decarboxylation of lignin.

e Performed baseline characterization studies on model
compounds (i.e., lignin and cellobiose)

 Demonstrated low temperature catalyzed gasification of lignin

gz
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LANL Overview of Scoping Experiments

e Flow reactor system for liquid conversion (bench-scale)
e Batch reactors for liquid/solid conversion (bench-scale)

e Scoping experimental results
— Liquid phase conversion
¢ (Glucose, Cellobiose)
— Solid phase mass conversion
e (Lignin, Pine)
— Residual solids analysis
e TGA (thermal gravimetric analysis)
e NMR
e FTIR (molecular vibrational frequencies)
— Product analysis
e LC (liquid chromatograph)
70 e Gas Analysis
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Conversion of Liquid Phase

 Heterogeneous catalytic conversion of soluble phase
— Glucose and Cellobiose to vapor phase products
« Homogeneous catalytic conversion of model cellulose
— Cellobiose as model compound to demonstrate solubization
* OQOperation
— Flow reactor
* Well defined conditions (control of T, P, flows)
e Gas analysis
— Batch reactors — closed system
* Reactants loaded, putin oven
— T=100-275°C;4—-18 hrs
* Post analysis
— Catalysts
* Base metals, noble metals with Lewis acid supports (Al,O,, zeolites)
e Ln Triflates, perfluorosulphonic acid as homogeneous Lewis acids
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Liquid Chromatography Analysis

Glucose
Reactant: Glucose Catalyst: Pt
Batch Reactor Conditions:
200000—% Trxn = 100 OC, trxn - 18 hrs
=] (standard)
: D iffe re nt Sca |e : [% RIDT &, Refractive Index Signal (AFILEMTSIG10138.00

Observations:
*Unidentified liquid phase products (trace)
*Products primarily in vapor phase
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Liquid Chromatography Analysis (cont’d)

—

Reactant: Cellobiose

Batch Reactor Conditions:
=18 hrs

Trxn =100 OC' trxn
Conversion: ~ 13.8%

Reactant: Cellobiose
Batch Reactor Conditions:
=18 hrs

Trxn =100 OC' trxn
Conversion: ~ 42%
Observations:

*Unidentified liquid phase products (trace)
*Products primarily in vapor phase
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Liquid Phase Reactant Conversion

10.0%
80.0%
™
-
2 600%
&
-]
:
L 400%
n
n M 1
£ [ Cellobiose Conversion
\J /0 —
l Glucose Conversion
0.0% - I | .
Blank Blank g-AI203 Pt/Sn/g-AI203 Pt/SnC Pt/Rh
Catalyst

Liquid analysis indicates heterogeneous conversion of Glucose and Cellobiose
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Digestion of Cellulose with LnX,

Can Lanthanide Salts LnX; (X = OTf, Cl) act as hydrolysis catalyst?

_ H oH
microcrystalline cellulose

[LnX;5]; H20
220-270 °C

water and methanol soluble components (oligosaccharides ?)
in up to 50 % yield - no further characterization or analysis

Lnt3)(CF,S0,),

Literature search reveals a single study by Japanese researchers:
pa T. Sakaki et al., Jpn. Kokai Tokkyo Koho, 2002, Jap. Pat. 2002085100; CAN 136:246813
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Cellobiose as a Model for Cellulose

—

OH
OH OH
(o)
HO (o) [cat.], H,O (o)
HO O > HO
OH, HO HO \
OH OH OH “OH

cellobiose o/B-D-glucose

C4(n)
C4(o/B) C4(a/B)

NMR Analysis

e Anomeric carbons C, and their associated protons give distinct
and easily tracked resonances in the 13C and *H NMR.

e Expect 3 signals for cellobiose: n, a & 3

#)
/'—7 [ [ . .
/Lo m&mgect 2 slightly shifted signals for glucose: o & 3 = e
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Catalyzed Hydrolysis of Cellobiose to Glucose

13C NMR

\

cellobiose only (control)

il

=
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v

L"Mom«bw

cellobiose + Gd(OTf),

anomeric carbon signals:
C4(n), C4(a/B) and C4(o/P)
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Catalyzed Hydrolysis of Cellobiose to Glucose

13C NMR Anomeric Carbon Signals Magnified

Spinvy orks 2.5:

Blue = cellobiose
Red = glucose
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Catalyzed Hydrolysis of Cellulose (Aqueous Suspension)
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Solid Phase Conversion of Lignin

80.0%

B Lignin 275°C/ 18 hrs
B Pine

70.0% -

60.0% -

50.0% -

Mass Conversion

40.0% -

30.0% -

20.0% -
blank La Triflate 3% H202 1% perfluorosulphonic
acid

Enhanced catalytic conversion of solids, But rates too slow
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Gas Concentration/ %

Lignin Gasification Product Distribution

I4,O N
0 Gd Trfilate / Pine
35 W YD Triflate / Pine Batch Operation: Pine
O La Triflate / Pine o
20 | Treatment @ 225°C for
18 hrs
25 -
20 I
15 —
10 -
5 T i
o =l | . \
H2 N2 CO CH4 CO2
Gas Analysis post batch reactor operation
N, from air in overhead reactor space
» Los Alamos = The Institute
NATIONAL LABORATORY — for Hydrogen
% and Fuel Cell
UNCLASSIFIED = Research



Lignin Gas Phase Product Ratios

Should have ~
equilibrium via W.G.S.
reaction between H,, CO,
CO,, H,0

Normalized Desired Gas Ratios
o
[¢)]

04 - Likely losing H, via
034 reactor septum
02-
0.1-
o _
Gd Trfilate / Pine Yb Triflate / Pine La Triflate / Pine
Desired products:
CO>H2 >CH4
Major products are not alkanes
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Liquid Analysis of Lignin products
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TGA of Lignin Residue After Various Treatments

100  mm ———
T —— + Lignin Blank
0 = Lignin + Gd Triflate
80 Lignin + H202
Lignin + perfluorosufonic acid
70
g -
.T! 50
=
£ 40
2
(=) 30 -
Atmosphere: Air
20
10
O T T T T T T T |
0 100 200 300 400 500 600 700 800
Temperature / oC
Oxidation of Lignin remains unchanged
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TGA of Lignin Residue after Various Treatments

100 -
90
80 -
2 70 ! i et
B Lignin-+ H20D o
= 60 L!gn!n+perﬂo_LrosquI'10nc acid
b~ x Lignin + La Triflate
c
< 0
o~
40 -
30
20 -
10 Atmosphere: N,
O T T T T T T T
0 100 200 300 400 500 600 700 800
Temperature / oC
e Decomposition of Lignin
e Most cases unchanged
e via a different mechanism for Lignin + Gd Triflate
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TGA of pine in an Oxidizing Atmosphere (Air)

100 - ,
% % %
= Pine 225 oC/ H20
80
Pine 275 oC/ H20O
70 f
g; Pine 1% perfluorosufonic acid/ 275 oC
60 i
§ x Pine La Triflate / 275 oC
= 90
EE' 40 Fresh pine shows loss
2 of lower molecular ——
(-} . ) h
30 T"weight HC’s
20 -
10 -
O T T T T T ' T " 1
100 200 300 400 500 600 700 800
Temperature / oC
Oxidation of treated pine remains unchanged
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TGA of Pine in inert atmosphere (N,,

120
+ Pine
= Pine 225C
100 - Pine 275 oC / H20 .
Pine 1% perfluorosufonic acid
x Pine La Triflate/ 275 oC
g 80
® ©0
:-E Fresh pine shows loss
O of lower molecular ———”
>~ 40 : )
weight HC's
20
0 T T T T T T T
0 100 200 300 400 500 600 700 800
N _ Temperature/ oC
Decomposition mechanism unchanged with La Triflate
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TGA and Evolved Gas Analysis: Lignin Treated with Yb
Triflate

Batch Operation: Pine

Treatment @ 275°C for 18 hrs No evolution of higher

80 molecular weight

compounds
Lignin Mass |

Gas Concentration (ppim)
3
3
€o) ssan

+20
100 -
- 10
0O_- T T T T 0]
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OH
lignin OH or lignin DRIFTS:
Fresh Lignin
CH,0 OCHj,
OH or lignin

DRIFTS: Diffuse Reflectance Infrared
Fourier Transform Spectroscopy
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KM

KM

DRIFTS of Lignin with Decomposition

_'Fresh Lignin Hydrolytic T = 25C

2.0
15.
1.0-
05-
0.0
TLignin Fresh Hydrolytic T = 600C .
2.0 Loss of specific
5l Decomposition of Lignin 4~ vibrational
. features
Loss of
1.0 hydroxyl species
3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)
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Comparison of Fresh and Treated Lignin (300 °()

:Lignin Li Trif Treated T = 250C
5 LaTriflate
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'Lignin Fresh Hydrolytic T = 300C v ¢
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Fresh and treated lignin (300 °C)
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DRIFTS of Fresh Pine and Thermally Treated

1— - Fresh Pine T=21.4C
- Fresh Pine after Thermal Treatment at 6000C
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CH;0 OCH;,
OH or lignin

HOH,C,

S5S5-NMR of Fresh Lignin
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C13 SS-NMR of Fresh Lignin
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Low Temperature Catalytic Pyrolysis/Gasification of Lignin

Low-temperature, catalytic pyrolysis Lignin pyrolysis in the absence of a
of lignin catalyst
:(é; | — oo, - 10 o
_z —CH, - 20 E
O HJlE =
g —TGA 30 g ‘_é g
7 al 13 ¢
c% - 40 & (% s
é i L 50 (5‘@
Temperature (°C) Temperature (°C)
(Tramp rate = 5°C/min, N, purge rate = 30 ml/min) (Tramp rate = 5°C/min, N, purge rate = 30 ml/min)
Catalysts show a reduction in temperature required for hydrogen production
(reduce the activation energy for the reaction)
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LANL Project Summary

 Conversion of cellobiose to glucose is feasible, but rates currently too low
* Lignin hydrophobicity is a critical challenge for APRxn processes
* Recent results of low temperature catalyzed pyrolysis of lignin shows potential
» Mechanism of the low temperature catalyzed pyrolysis of lignin currently unknown
* Heterogeneous catalysis of glucose and cellobiose
» Relatively high conversions during batch reaction (~60 — 90%)
» Major products appear to be gas phase for heterogeneous catalysis
* Homogeneous catalysis of cellobiose hydrolysis to glucose without significant
decomposition and/or caramelization
» Aqueous cellulose suspension marginally hydrolyzed to free glucose
* Solid conversion of Lignin & Pine increased by Lewis Acid catalysis
» Gas phase products tend to syngas rather than alkanes
» Minimal structural change of remaining Lignin (TGA, NMR, DRIFTS)
—Some change in vibrational structure with La Triflate
» Lignin/Gd Triflate demonstrates different decomposition mechanism
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LANL Proposed Future Work* (FY09)

e Continue screening for novel hydrogen production catalysts
e Explore conversion chemistry of model monolignols

» Develop heterogeneous catalyst for agueous phase
reactions

* Continue to explore lignin solubilization and pyrolysis

> Investigate hydrophobic/hydrophilic effects on reaction
chemistry of lignin

» Improve homogeneous catalyst formulations

*Due to EERE Hydrogen Production and Delivery’s budget being zeroed
" out, LANL is not currently funded for FY09

.
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Obstacles to Lignocellulosic Conversion

* Conversion of solubilized hydrocarbons to vapor phase
* Conversion of model compounds simulating solubilization

* Unknown reactivity as a function of lignin pretreatment
* Lignin Solubilization
— Interactions with catalysts limited
— Hydrophobicity
— Steric hinderance
e Conversion chemistry
— Reaction mechanisms not understood
e [nnovation in chemistry and catalysis

e [nnovation in reactor design and reaction engineering
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