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Project start date: FY05
Project end date: FY10
Percent complete: 80%

Budget

Requested total: $1.05M
(DOE)

Cost sharing: $0.33M
FY08 $218K (DOE)
FY09 $225K (DOE)
planned
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Timeline Barriers

A. System weight and volume
E. Charging/discharging rates
(kinetics)

P. Lack of Understanding of

Hydrogen Physisorption and
Chemisorption

Partners

Caltech, HRL, U. Hawaii, JPL,
U. Missouri, NIST, Sandia,
Stanford, UIUC, U. Utah

m Coordination of theory work

within MHCoE through the
theory working group
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Overall Objectives

m Predict new metal hydrides with favorable
thermodynamics

m Compute interfacial properties of hydrides
m Address fundamental processes in hydrogenation

Specific Objectives for FY09-FY10

m Complete reaction screening including multistep and
metastable reactions and new additions to the database

m Finalize work on thermodynamics of multiple gas-phase
species
m Include thermodynamics of amorphous and crystalline

closo-borane structures such as MgB,,H,, and related
materials in the screening of candidate reactions

m Finish work on mixed metal hydrides
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Milestones

Month/Year

Milestone or Go/No-Go Decision

Feb-07

v

Identify single-step reactions having acceptable
hydrogen gravimetric densities and thermodynamics
using the automated free energy search procedure.
Paper has now been published: J. Phys. Chem. C, 112,
5258-5262 (2008).

Jun-08

Identify and classify multi-step and metastable
reactions having acceptable hydrogen capacities and
thermodynamics using the automated free energy
search procedure.

Interesting multi-step reactions have been identified. More
calculations and analysis required.

Sept-08

Investigate dehydrogenation/hydrogenation pathways
for Mg(BH,4H), in concert with experimental efforts.
Experiments have identified Mg(B,,H,,) as a possible
amorphous phase intermediate.
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« We use first principles density functional theory to
compute structures and energies of solids and gas
phase species

« Phonon density of states calculations are performed for
finite temperature thermodynamics

« A free energy minimization linear program is used for
screening mixtures for promising reactions

« Surface energy calculations are used to assess
nanoparticle effects on the thermodynamics

* First principles molecular dynamics is used to generate
amorphous phases

« Transition state theory employed for studying surface
reactions and diffusion mechanisms
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EXCELLENCE New Database Entries

MH Database: Library of compounds used to predict
thermodynamics for new reactions

We are adding new structures from the ICSD and from
recent literature (experiments & modeling):

Ti,AIC, SiC, MgAl,Si,, K,B-Si;g, C,N,(NH), Li,Ca(NH),, Ca(BH,),, Al(BH,)s,
Ca,Si, NaBH,, KB,,H,s, Ca,TiN,, Li,(BH,)(NH.),, K,LiAlH;, Mg,B,., Mg,B,,C,
CaAlSi, CaBy;H;,, CaBy, MgB4;H 5, Mg(NH3),(N3),, NHZHCN,, (BygHys),,
MgB,,Si,, Ca,N,(CN,), Si;N,, LiMgH,, MgB,,C,, B,5N,, Li,:Si,, LiSc(BH,),,
LiK(BH,)p, LiB1;Cy, LipB1,Car (KINH,))(NH,),, Cag(SipNg), LI(B(CN),),
NaB(CN),, (NH,)B(CN),, Ca;(BN,),, K,NaAlH;, Mg, TiH,g, LiNa,AlH,
LiAIMg4,H.4, LiB, Liy(BHg), LiBH, Li(BH,), Na,(B,,H40), Ko(B1gH10),
K,Na(NH,);, K,Li(NH,);, Ca,Al;Mg, Ca,;Ns(CN,),, Sc,AIC, V,,Al,C,, B-SiH,,
NH,BH,
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MgB,H,, CaB,,H,,

Experiments: Dehydrogenation of M(BH,), can give amorphous MB,,H,, intermediate products: Ahn et
al., J. Phys. Chem. C 2008, 772, 3164-3169; D. Graham, |. Robertson, in preparation

Tech Team suggested simulations with amorphous structures
Ab initio MD with a 100 atom supercell, T=1000 K, used to generate candidate amorphous structures
Snapshots picked out and relaxed to ground state low energy structures

We find many structures that are nearly isoenergetic, differing in the location of the cations and the
rotation of the B,H,, units.

Collaboration with D. Johnson, D. Graham, I. Robertson (lllinois), paper in progress. 7
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« Energy histograms of structures optimized from MD melt
shapshots

« Many structures have energies that are within tens of meV of the
ground state—some within a few meV (NB kT=0.03 eV)

« The ground states are the PEGS structures generated by
Majzoub et al. J. Am. Chem. Soc., 2009, 131, 230-237

Many structures are populated at room temperature
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80y  Top graph: simulated
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2 404 * Bottom graph:
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Motivation: Accurate description of diffusion allows identification of
dopants to improve diffusion kinetics
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Chemistry point of view: MgH, an ionic solid (Mg)* 2(H)
Physics point of view: MgH, an insulator, DFT band gap > 4 eV
We should consider diffusion of neutral and charged defects

5 T ' T ' T ' |
I (a) ]

~ 4E\ ]
> ~
2
Eﬁ Use methods introduced by
% Chris van de Walle
g (Phys. Rev. B76 (2007) 214101)
5
g Position of Fermi level is fixed
= by charge neutrality

) | | | |

0 1 2 3 4 HaoandSholl, Appl. Phys. Lett., 93 (2008) 251901
E (eV)

Fermi

10

Key result: Dominant defect is (vacancy)® and (H interstitial)
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e Hopping of (vacancy)+ has energy barrier 0.30 eV
(compared to 0.60 eV for neutral vacancy)

Interstitial e Diffusion of (interstitial H)" in MgH,

Hao and Sholl, Appl. Phys. Lett., 93 (2008) 251901

H interstitial
H “crowded”

Initial state Transition state Final state

This is an “interstitialcy” mechanism
Energy barrier for this process is 0.003 eV 11
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* Diffusion dominated by
charged defects in MgH,
and NaMgH,,

Hao and Sholl, Appl. Phys. Lett., 93 (2008) 251901

gad= T T ' T ' =
10 : A—aH nNaMgH, {  qualitatively confirmed
107°F z—aVv, nNaMg,| by experiments in
’;J\ -ISE A— _AHi- il’l MgH2 ? . .

NE 10°°F B OV Mg, | samples with applied
;10-205_ o—ov innavgn, ]  VOltage by Griessen and
:‘é 10_225_ G- —oV, inMgH, | co-workers (Appl. Phys.
é b ] Lett. 90 (2007) 071912)
=107 1
- E |
T 107°F 3 ¢ Results based on neutral

103k 3  defects are wrong by
E, | : many orders of
2.5 3 3.5

i itud
1000/T (K'Y magnitude
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\\\ Nal i |
s 6 \\\\ ! NaK/[g -
Presence of charged dopants can greatly ) ; _
enhance H diffusion rates. 8 4 "
This idea advanced by Peles & van de Walle for NaAlH, % :
(Phys. Rev. B. 76 (2007) 214101) g )
DFT calculations used to assess dopants in g
MgH, and NaMgH, E
Na in MgH, acts as a p-type dopant,

increasing population of H* vacancies but
not enhancing overall H diffusion.

Co in MgH, acts as an n-type dopant,
increasing population of H- interstitials and
enhancing overall H diffusion.

At 400 K, H diffusion is predicted to be
enhanced by a factor of ~1000.

Potential to identify dopants
for other systems

Formation energy (eV)

Hao and Sholl, Appl. Phys. Lett., submitted
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Multiple Gas-phase Species

Sandia

—In collaboration with Mark Allendorf, Sandia @ National

Laboratories

Previous grand potential method was limited to a single gas
phase product: Pure H,.
FactSage used to perform thermodynamic calculations with free
energies for solid phases computed using DFT (including zero
point energies and vibrational contributions)
* Gas phase species included in calculations:
H,, Li, Li,, Mg, Mg,, LiH, MgH, Ar,
N,, N5, NH, NH,, NH;, N,H,, HNNH, HCN, LiN, MgN
CH, CH,, CH;, CH,, C,H, C,H,, C,H;, CH,, C,H., C,H,
B, B,, BH;, BH,, BH,, B,H, B,H,, B,H,, B,H,, B,H., B,H,, B5H-,
B3Hg, BoHy, B4H 1o, B4H1p, BsHg, BsHyy, BgHyo, BgHyp, BgHys, BigHyy,
BN, BC, B3HN,
All calculations performed in closed systems

14
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Example: LiNH, + C

Nominal reaction (only H, gas
phase):
LiNH, + 0.5C = 0.5Li,CN, + H,

10° - N
Adding other gas phase species: 10| H,(9)
LiNH, + 0.5C = 0.5LiNH, + ; P=1 atm

0.25Li,CN, + 0.25CH, = ? Gas phase species
51 + o 107
0.5Li,CN, + H, 2 cH, () )
10" £ \H d
Side reactions: Formation of (9)
107 /
NH,;, N, are low ; ;
106 Y AT T [.\!2..(9 .......................... ]
300 400 500 600 700 800 900 1000
At higher T: LiH, Li appear in the T (K)

gas phase

Screening now identifies generation of CH,—Desired products are
metastable




Example: LiBH, + C

Nominal reaCtion IIII|IIII|IIII|IIII|IIII|IIII|IIII
LiBH, + C <& LiBC + 2H,

Also possible:

 LiBH, + 2C < LiBC + CH,

* LiBH, +0.75C <& LiH+ B + 0.75 CH,

Moles

Conditions for each calculation

* 1 mole LiBH, +1 mole C as graphite
« Constant P (1 atm), constant T
Results

” r

° L|HandC(S)notstab|e3oo_64OK 10-10 il bidas v b L

— Converted to CH, and LiBC 400 600 800 1000

« Complete conversion to LIBC+H, only
at T>540K

« BHj; is only significant B-containing
gas-phase species 16

Temperature (K)
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LiSc(BH,),

ijt

« 4

Li

Sc

New Borohydrides:
LiSc(BH,), and LiK(BH,),

Experimental observation
Li : Half occupancy (4k position)

Georgialli
I @i Techmn

Our DFT calculation
Li : Full occupancy (2a
position)

H. Hagemann et al. J. Phys. Chem. A 112 (2008) 7551

-We identified reaction thermodynamics of LiSc(BH,), using
thermodynamic calculations:

1. Minimum free energy path of LiSc(BH,), decomposition reaction
LiSc(BH,), = LiBH, + 0.1ScB,, + 0.9ScB, + 6H,

2. Destabilization reactions of LiSc(BH,),

Also investigated by Eric Majzoub & others in MHCoE

- Experimental observation
LiK(BH,), is synthesized by the mixture of LiBH, and
KBH,
E. A. Nickels et al. Angew. Chem. Int. Ed. 47 (2008) 2817
-Our calculations:

1. Bulk optimizations for LiK(BH,),, KBH,, and NaBH,
2. Thermodynamic examination of LiK(BH,),

LiK(BH,), is not the stable compound compared with the mixture
of LiBH, and KBH,, 17



yoo METAL

Collaborations:
Experimental

 Rebecca Newhouse, Sandia and Ewa Ronnebro (formerly Sandia)
— We are computing the thermodynamics of the doped materials: Mg, ,Al,B, and Mg(B,,_
Cy)
X)~x/2
* Y. Filinchuk, R. Cerny, Grenoble, Geneva

— Experimental powder XRD gave Mg(BH4)2 structure of P6,, Our DFT calculations
gave P6,22 as the ground state, which prompted Filinchuk et al. to obtain single
crystal XRD, which confirmed our predicted P6,22 structure as the correct ground
state. Chem. Mater., 2009, 27, 925.

« Channing Ahn, CalTech
— Testing several systems we predicted to have favorable thermodynamics, including
LiBH,/TiH, and LiBH,/CaH,
« Zak Fang, Utah
— We are providing calculations for the LiMgN system
* Andrew Goudy, DSU / Fred Pinkerton, GM
— Independently both working on CaH, + 6 LiBH,
« John Vajo, HRL

— Testing several systems for which we have made predictions, including LiBC and
Mg(BC),

18
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Theory

We are working closely with many other computational
people within the MHCOE:

« Mark Allendorf (Sandia, leader of Theory Group)
« Bruce Clemens (Stanford)

* Duane Johnson (lllinois)

« Ursula Kattner (NIST)

« Eric Majzoub (Missouri)

19
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Future Work
FY 2009
— Carry out analysis of multi-step reactions, submit paper for
publication

— Finish calculations for updated database reactions and carry
out screening

— Analyze the thermodynamics and structure of amorphous
MB,,H,, systems for M=Ca and Mg

FY 2010

— Examine diffusion through void spaces in metal hydrides, as
prompted by experimental observations

— Implement fast reaction screening with multiple gas phase
species in as many cases as possible

20
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 Relevance: Theory is a powerful tool for screening candidate materials,
predicting thermodynamics, investigating diffusion

 Technical Accomplishments:
— Character of amorphous MgB,,H,, and CaB,,H,, has been analyzed

— Diffusion mechanism involving charged species found to be important in metal
hydrides—doping produces higher diffusion rates

— Free energy calculations have been augmented to include multiple gas phase
species
— New mixed metal borohydrides characterized
 Future work:
— Carry out analysis of multi-step reactions, submit paper for publication
— Finish calculations for updated database reactions and carry out screening

— Analyze the thermodynamics and structure of amorphous MB,,H,, systems for
M=Ca and Mg

— Examine diffusion through void spaces in metal hydrides, as prompted by
experimental observations

— Implement fast reaction screening with multiple gas phase species in as many
cases as possible

* Personnel: Ki Chul Kim, Anant Kulkarni
21
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