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Overview

• Project start date:  3/1/05
• Project end date:  2/28/10
• ~90% complete

• Technical Barriers- Hydrogen 
Storage

A. System Weight and 
Volume

C. Efficiency
P.  Lack of Understanding 

of Hydrogen 
Physisorption and 
Chemisorption

Timeline

Budget

Barriers

• Current collaborations:  Penn State, Texas A&M University
• Anticipated/other interactions:  NREL, Rice University, Univ. of 

Michigan (coordination of computational modeling efforts)

Partners

• Total project $3,948,220
• DOE share $3,158,575 (80%)

• FY08 funding $700,000
• FY09 funding $750,000
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• Development and testing of new materials with high H2 storage density and 
appropriate enthalpy of hydrogen adsorption for operation of hydrogen storage 
systems at practical engineering pressures and temperatures:
– This task addresses H2 Storage Technical Barriers A (System Weight and 

Volume) and C (Efficiency)
– Leverages our existing materials science and chemistry capabilities (eg. 

fluorine chemistry) to generate new hydrogen storage materials for testing

• Development of enabling technologies for H2 storage materials development by 
HSCoE partners:
– This task addresses H2 Storage Technical Barrier P (Lack of Understanding 

of Hydrogen Physisorption and Chemisorption)
– Accurate, predictive computational methodologies for new materials 

discovery and mechanistic understanding of hydrogen spillover
– Development of unique characterization tools for accurate H2 storage 

measurements
– Measurement  of hydrogen isotherms for HSCoE partners (~25% of 

available instrument time)

Relevance – Project Objectives
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Simulated Langmuir 
isotherms at 200 
and 293 K for an 
adsorbent with 
ΔH = 15 kJ/mol 
(assumptions:  

maximum capacity = 
10 wt. %, 

ΔS = 95 J K-1 mol-1) 
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Relevance – Enhanced Physisorption

Physisorption of H2 using materials with a practical
enthalpy can enable hydrogen storage systems that 

operate at moderate pressures and temperatures



Approach – Technical Motivation
• How can we enable and execute discovery of materials with 

enhanced enthalpy relative to “conventional” hydrogen storage 
materials (eg. activated carbon)?

– Interaction of hydrogen with either electron-deficient species (electrophiles, Lewis 
acids) or very strong electron donors (Lewis bases)

5

1.725

0.795

ΔE = -24.3 kJ/mol H2

F-

Interaction of H2 with a  
fluoride anion Adsorption of H2 on boron 

atoms of BC3
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Approach – Discovery of New H2 Storage 
Materials 

• Translate predictive computational modeling to 
development and testing of new H2 storage materials
– Novel materials development based upon theoretical predictions of 

high H2 storage density and/or enthalpy
– Materials synthesis (fluorine chemistry, novel boron-containing carbon 

materials)
• General quantitative computational models for new materials 

discovery
– Through collaborative efforts within the CoE, realize a more practical 

overlap between computational and experimental work (e.g., modeling 
mechanism of hydrogen spillover)

• Accurate measurement techniques
– Correction for helium adsorption effects on H2 isotherms
– Surface area determination using H2 condensation as a more 

informative alternative to conventional N2 sorption methods
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Milestone

3QFY08 Finish ab initio MD simulations and minimum energy path 
calculations on BC3 and related compounds

1QFY09 Find optimal BF4
-/F- ratios for maximum H2 uptake and 

heat of adsorption in intercalated graphite

2QFY09 Go/no go decision on F- intercalated graphite
Identify synthetic routes to novel boron-containing carbon 
materials 

Approach - Milestones



Graphitic 
Carbon BF4

- Intercalated 
graphite (2nd stage)

Mixed F-/BF4
-

intercalated graphite

BF3 -BF3

heat20% F2/80% N2

Graphitic 
Carbon BF4

- Intercalated 
graphite (1st stage)

Mixed F-/BF4
-

intercalated graphite

BF3 -BF3

heat100 % F2

Our upgraded experimental procedure has facilitated the 
use of pure F2 which allowed the synthesis of 1st stage 

BF4
- intercalated graphite

Technical Accomplishments –
Synthesis of F-/BF4

- Graphite Intercalation Compounds (GIC)



Graphitic Carbon
BF4

- Intercalated 
graphite (2nd stage)

BF3

20% F2/80% N2

BF4
- Intercalated 

graphite (1st stage)
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Technical Accomplishments –
Creation of Microporosity by Anion Intercalation

Surface Area = 15 m2/g

Surface Area = 70-120 m2/g

~C20BF4

Mixed F-/BF4
-

intercalated graphite

-BF3

heat

~C8BF4

Surface Area = 12 m2/g
~C97BF13

Surface Area = 13 m2/g

1st stage GIC shows no improvement in surface area  
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Technical Accomplishments –
Comparison of H2 isotherms on 1st and 2nd Stage Compounds

1st stage GIC shows higher initial heat, lower overall capacity

2nd stage 1st stage



Carbon S.A.
(m2/g)

Intercalant Elemental 
Analysis

S.A. 
of GIC 
(m2/g)

H2
capacity 
@ 25 oC, 
100 bar

ΔH 
(kJ/mol 

H2)

Graphite 15 BF4
- C25BF4 75 0.12 wt.% 12

Graphite 15 HF2
- C3.4F 18 0.04 wt.% 4.5

Graphitized 
Activated Carbon

145 BF4
- C51BF5 20.7 0.18 wt.% 7

Activated C Fiber 1800 BF4
- C154BF31 775 0.20 wt.% 7

Activated Carbon 
(AX-21)

2500 BF4
- C123BF8 2390 0.60 wt.% 7

Technical Accomplishments – Synthesis and Testing of 
GIC’s Prepared with High Surface Area Hosts

Change 
Anion

Change 
Host 

Material

Elemental Analysis indicates low levels of intercalation and 
covalent C-F bond formation (fluorination) 

Isosteric heat calculations indicate little enhancement of H2
adsorption enthalpy relative to host materials



Background - Hydrogen Spillover in BC3
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H2 dissociative chemisorption on a BC3 sheet:

Published LDA calculations indicate that H2 undergoes spontaneous dissociation 
in bulk BC3

Zhang and Alavi (J. Chem. Phys. 2007, 127, 214704)

Orbital interaction:Electron density:

B
C

C

C

H2 HOMO (σ-orbital) LUMO

moderate 
barrier

endothermic
reaction

H2 dissociation can be activated via orbital interaction between σ-orbital of H2 (HOMO) 
and the empty pz-orbital of B, leading to C-H bond formation

C



Technical Accomplishments –
Understanding H2 Dissociative Chemisorption in Bulk BC3

H2 diffusion into BC3 pore: facile 

H2 dissociation inside BC3: facile
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Ea: ~0.35 eV

ΔE: ~ -0.31 eV

H2 dissociative chemisorption in bulk BC3 is energetically possible
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H diffusion inside BC3

Barrier for 1 → 3: ~ 1.30 eV
Barrier for 1 → 4: ~ 0.78 eV
Barrier for 1 → 2: ~ 0.47 eV
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Long-range diffusion of chemisorbed H may be prevented by large barriers 
for diffusion steps that require C B transfer of hydrogen

Technical Accomplishments –
Identification of Barriers for Migration of Chemisorbed 

Hydrogen on BC3 Sheets
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Technical Accomplishments – Calculation of  H2
Adsorption Energy in Bulk BC3

Note:  LDA 
overestimates the 
H binding energy 

low loading

high loading

1.06 wt.%
0.014kg/l

2.11 wt.%
0.027kg/l

4.13 wt.%
0.053kg/l

6.06 wt.%
0.073kg/l

H2 dissociative chemisorption in bulk BC3 is energetically possible, but 
chemisorbed H may be too stable at high loadings for reversibility
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Collaborations
Pennsylvania State University
Chung Research Group:
Measurement of hydrogen isotherms and 
exchange of ideas on materials development
Foley Research Group:
Measurement of hydrogen spillover on Pt/C 
samples

Texas A&M University
Measurement of hydrogen 
isotherms and isosteric heats 
(joint publication)

NREL, Rice University, 
University of Michigan
Coordination of computational 
modeling of hydrogen spillover
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• Computational Modeling
– Study incorporation of other heteroatoms in BC3 to modify hydrogen 

chemisorption energies promote reversibility of hydrogen adsorption
– Understand the thresholds for hydrogen physisorption/chemisorption in 

BCx materials
– Predictive computational modeling of new BCx materials

• Materials Development
– Develop strategies for increasing surface area of BCx materials 

(collaboration with M. Chung – Penn State University)
– Develop a systematic model of B content and H2 adsorption enthalpy 

using isosteric heat determinations and, potentially, calorimetry

• Adsorption Characterization
– Explore utility of H2 surface area determination for microporous 

adsorbents developed in the current project and HSCoE partner 
projects

Proposed Future Work
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• Fluoride materials were a good idea but we found the 
fundamental limits were far too low for practical H2 
storage materials

• A good alternative are boron-containing carbon – higher 
heats, possibility for high surface areas

• Use of modeling as a guide for synthetic targets appears 
to yield promising approaches

Summary
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