A Synergistic Approach to the Development of New Hydrogen Storage Materials, Part I

Jean M. J. Fréchet, Martin Head-Gordon, Jeffrey R. Long, Thomas J. Richardson, and Samuel S. Mao

Department of Chemistry, University of California, Berkeley and Division of Environmental Energy Technologies, Lawrence Berkeley National Laboratory

May 22, 2009

Project ID # ST_32_Long

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start: 12/1/04
- Project end: 11/30/09
- Percent complete: 70%

Budget
- Total funding expected: $2.9M
 - $1.8M from DOE to UC Berkeley
 - $600k from DOE to LBNL
 - $500k in cost-sharing
- Funding FY08: $600k
- Funding FY09: $567k

Barriers
- Identify new materials enabling a hydrogen storage system achieving:
 - 2 kWh/kg (6 wt %)
 - 1.5 kWh/L (0.045 kg/L)
 - 4 $/kWh

Partners
- ChevronTexaco
- General Motors Corporation
- Electric Power Research Institute
Overall Program

Synthesis of porous polymers (Fréchet)
Synthesis of porous coordination solids (Long)
Calculations of H₂ binding energies (Head-Gordon)
Synthesis of destabilized hydrides (Richardson)
H₂ storage characterization instrumentation (Mao)
Metal/metal hydride nanocrystals (Alivisatos)
Synthesis of nanostructured boron nitrides (Zettl)
Theory for boron nitride materials (Cohen and Louie)

*Note that the results presented here are solely from Part I, which is funded through EERE.
H₂ Adsorption in a Hypercrosslinked Polymer

\[\text{poly(chloromethylstyrene-co-divinylbenzene)} \]

- Surface area: 2,200 m²/g
- Sorption capacity: 3.8 wt %

77 K

Excess H₂ Adsorbed, wt %

Pressure, MPa

[Graph showing the adsorption isotherm at 77 K]
Hypercrosslinked Polyaniline

<table>
<thead>
<tr>
<th>Polyaniline</th>
<th>Reagent</th>
<th>Reactions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ullman 1 [K_2CO_3\text{ and CuBr in NMP}]</td>
<td>Crosslinked polyaniline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ullman 2 [Cu(PPh_3)_3 \text{ and } CsCO_3 \text{ in NMP, Toluene and DMF}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buchwald [Pd(dbu)_2 \text{ and tBuONa and DPPF in NMP, Toluene and DMF}]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Surf. area, m²/g</th>
<th>Pore volume, mL/g</th>
<th>Nano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ullman 1 (dibromo)</td>
<td>156</td>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>Ullman 2 (diiodo)</td>
<td>96</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Buchwald (diiodo)</td>
<td>343</td>
<td>0.25</td>
<td>0.13</td>
</tr>
<tr>
<td>Buchwald (tribromo)</td>
<td>368</td>
<td>0.25</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Size Exclusion of Gases in Ultrananopores

<table>
<thead>
<tr>
<th></th>
<th>BET/N₂</th>
<th>Langmuir/H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchwald (tribromo)</td>
<td>157</td>
<td>354</td>
</tr>
</tbody>
</table>

H₂ adsorption only

Surface area, m²/g

Gas adsorbed, cm³ liquid equiv/g

Pressure, MPa

N₂ nanopore volume
Nanoporous Nitrogen-Containing Polymers

1,4-Diaminobenzene

Reagent Reaction Product

Crosslinked aromatic rings

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Surf. area, m²/g</th>
<th>Pore volume, mL/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Langmuir</td>
<td>Total</td>
</tr>
<tr>
<td>Diiodobenzene</td>
<td>192</td>
<td>0.01</td>
</tr>
<tr>
<td>Tribromobenzene</td>
<td>384</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Stronger H_2 Adsorption

- Heat of adsorption, kJ/mol
- Hydrogen adsorbed, wt%

Diaminobenzene + tribromobenzene

Polyaniline + diiodobenzene
Hypercrosslinked Polypyrrole

Crosslinking with alkyl groups:

\[
\text{N} \begin{array}{c}
\text{H} \\
\end{array} + \text{CH}_2\text{I}_2 \xrightarrow{\text{Cs}_2\text{CO}_3} \text{N} \begin{array}{c}
\text{H} \\
\end{array} \text{CH}_2 \text{N} \begin{array}{c}
\text{H} \\
\end{array}
\]

DMSO

Crosslinking with boron:

\[
\text{N} \begin{array}{c}
\text{H} \\
\end{array} + \text{Bi}_3 \xrightarrow{\text{Cs}_2\text{Co}_3 \text{ (fine powder)}} \text{B}
\]

Toluene
Increased H₂ Adsorption Capacity

Temperature: $T = 77 \text{ K}$

<table>
<thead>
<tr>
<th></th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET/N₂</td>
<td>Ppy 738 m²/g</td>
</tr>
<tr>
<td></td>
<td>Pani 630 m²/g</td>
</tr>
</tbody>
</table>
Size Exclusion of Gases in Ultrananopores

No ultrananopores

Ultrananopores

Gas Adsorbed, cm3/g liquid equiv.

Pressure, MPa

\[\text{H}_2 \]

\[\text{N}_2 \]

Gas Adsorbed, cm3/g liquid equiv.

Pressure, MPa

\[\text{H}_2 \]

\[\text{N}_2 \]

Chemical structures of possible ultrananopores.
Hydrogen Storage in Completely-Activated MOF-5

• Currently best known material for cryogenic hydrogen storage at 77 K

• Performance at 298 K is poor owing to weak interaction of H₂ with surface
A Beryllium-Based Metal-Organic Framework

\[
\text{Be(NO}_3\text{)}_2 (\text{aq}) + \text{H}_3\text{BTB} \xrightarrow{\Delta \text{ DMSO/DMF}} \text{Be}_{12}(\text{OH})_{12}(\text{BTB})_4
\]

- Unprecedented structure with Be\textsubscript{12}(OH)\textsubscript{12} rings and 12 and 15 Å channels
- Nitrogen adsorption isotherm affords BET surface area of 4020 m2/g
Low-Pressure H$_2$ Uptake in Be$_{12}$(OH)$_{12}$(BTB)$_4$

- Weak interaction of H$_2$ with surface, as desired for cryogenic storage
- At pressures up to 100 bar, expect gravimetric storage above MOF-5
Strong H_2 Binding in MOF-5 Functionalized with Cr0

- Orbital interactions lead to strongly-bound H_2 complex that is too stable
- Need to generate charge-induced dipole interaction of 15-20 kJ/mol

$\Delta H = 78$ kJ/mol
(Head-Gordon et al.)
Exposed Mn$^{2+}$ sites lead to isosteric heat of adsorption of up to 10.1 kJ/mol

Need to increase strength of binding and concentration of open metal sites

*GM-supported research
Paddlewheel Frameworks

$M_3(BTC)_2$ (M = Cr, Cu, Zn, Mo)

- Preparation of $Cr_3(BTC)_2$ is new and activation of $Mo_3(BTC)_2$ is improved
- Enables comparison of H_2 binding at the open $M^{	ext{II}}$ coordination sites

<table>
<thead>
<tr>
<th></th>
<th>surface area (m^2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BET</td>
</tr>
<tr>
<td>$Cr_3(BTC)_2$</td>
<td>2340</td>
</tr>
<tr>
<td>$Cu_3(BTC)_2$ a</td>
<td>1944</td>
</tr>
<tr>
<td>$Zn_3(BTC)_2$</td>
<td>collapsed</td>
</tr>
<tr>
<td>$Mo_3(BTC)_2$ b</td>
<td>1280</td>
</tr>
<tr>
<td>$Mo_3(BTC)_2$</td>
<td>1800</td>
</tr>
</tbody>
</table>

a J. Am. Chem. Soc. 2006, 128, 3494
b J. Mater. Chem. 2006, 16, 2245
H₂ Uptake in M₃(BTC)₂ (M = Cr, Mo)

- First assessment of strength of H₂ binding to a Cr²⁺ center
- Expect better results for Co²⁺ and Ni²⁺ owing to a smaller ionic radius
- Attempts to synthesize analogues with other metal ions are underway
H₂ Uptake in Mg₂(DOBDC)

- Open Mg²⁺ sites lead to an isosteric heat of adsorption as high as 12.8 kJ/mol
- Neutron diffraction (Craig Brown, NIST) shows Mg···D₂ distance of 2.5 Å
Calculation of Substituent Effects

Metal chosen as Cr0

<table>
<thead>
<tr>
<th></th>
<th>OMe</th>
<th>OH</th>
<th>NH$_2$</th>
<th>F</th>
<th>CH$_3$</th>
<th>H</th>
<th>COH</th>
<th>COOH</th>
<th>CF$_3$</th>
<th>NO$_2$</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy, kJ/mol</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Electrostatics
- Back-donation
- Forward donation
Effect of Substituent (R)

- Electron-donating groups enhance binding, while electron-withdrawing groups reduce binding
 - Tunability is 7% of binding
 - Energies are for three bound H$_2$ molecules

- Correlates with back-donation, electrostatics

- Quantitative information; qualitative insight
 - BDC$^{2-}$ substituents can fine-tune binding
 - Coarse-tuning must come from different metals
Effect of Metal Substitution

- Heavier isoelectronic elements:
 - \((C_6H_6)Cr(H_2)_3\) binding per \(H_2\) of 68 kJ/mol
 - \((C_6H_6)Mo(H_2)_3\) binding per \(H_2\) of 84 kJ/mol

- Lighter transition elements:
 - \((C_6H_6)Cr(H_2)_3\) binding per \(H_2\) of 68 kJ/mol
 - \((C_6H_6)Ti(H_2)_4\) binding per \(H_2\) of 32 kJ/mol

- Shows coarse tuning is possible
 Still need to examine synergy of these effects
Computational Study of H$_2$ Binding in Cu-BTT

Measurements of H$_2$ binding energy within \(\text{HCu}[(\text{Cu}_4\text{Cl})_3(\text{BTT})_8] \) underway

- We will attempt to synthesize \(\text{HCu}[(\text{Cu}_4\text{Br})_3(\text{BTT})_8] \)

\(\omega \text{B97X-D/6-31G}^* \) calculations:

<table>
<thead>
<tr>
<th>X</th>
<th>E (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-10.9</td>
</tr>
<tr>
<td>Cl</td>
<td>-10.9</td>
</tr>
<tr>
<td>Br</td>
<td>-13.0</td>
</tr>
<tr>
<td>I</td>
<td>--</td>
</tr>
</tbody>
</table>
Computational Study of H₂ Binding in “Zn-BTT”

[B97X-D/6-31G* calculations:

<table>
<thead>
<tr>
<th>X</th>
<th>(E_{Cu}/\text{kJ/mol})</th>
<th>(E_{Zn}/\text{kJ/mol})</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-10.9</td>
<td>-13.8</td>
</tr>
<tr>
<td>Cl</td>
<td>-10.9</td>
<td>-15.9</td>
</tr>
<tr>
<td>Br</td>
<td>-13.0</td>
<td>-16.3</td>
</tr>
<tr>
<td>I</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

- Suggests significant improvement in binding energy for Zn-BTT frameworks
- We will therefore attempt to synthesize \(\text{Zn}_3[(\text{Zn}_4\text{Cl})_3\text{(BTT)}_8]_2\)
Destabilization of Metal Hydrides

- Attempts at alloying of Mg in order to reduce ΔH
- Success in partial substitution to form $\text{Mg}_{1-x}\text{A}_x$ ($\text{A} = \text{Mn, Fe, Ni}$)
- Some increases in plateau pressures, but poor kinetics
- Attempts to substitute Na and Li for Mg are underway
Addition of MgF₂ Enhances Utilization of MgH₂

- MgF₂ slows desorption, but increases amount desorbed despite added weight
- Fluoride is distributed over particle surface; no evidence for bulk substitution (XRD)
Fluoride Effect Persists through Repeated Cycling

- Best results are for 3 mol% MgF$_2$ added

High-resolution TEM shows sharp faceting and marked inhibition of Mg grain growth in fluoride-containing samples.

Without fluoride, sintering and coarsening reduce surface area and contribute to Mg isolation.

MgH$_2$ + 3 mol% MgF$_2$ after 2nd desorption @ 300° C
Metal Catalyst Activity not Inhibited by Fluoride

Activity of added vanadium not inhibited by the presence of fluoride

Good utilization at 250 °C

Still below 1 wt % at 200 °C

- Future work: higher energy milling and alternative fluoride sources

- In addition, the effect of fluoride addition on ternary hydrides will be studied