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Overview

Timeline Barriers
Project start date: 5/1/2005 Barriers addressed
Project end date: 4/30/2010 U Improved gravimetric and volumetric
Percent complete: 75% density of hydrogen uptake

O Improved hydrogen binding energy
O Synthesic scale up of MOFs to cubic

meters
Budget Collaborating Partners
U Total project funding Q Bill Goddard (Caltech)
= DOE share: $1.71 M 3 Randy Snurr (NW)
O Funding received in FY08: 430K O Joe Hupp (NW)
O Funding for FY09: $428 K O Juergen Eckert (UCSB)
d BASF



Important Aspects of MOF Chemistry

d Design of composition (metal centers and organic
links). Synthesis and structural characterization is
well worked out.

(1 Control of structure, topology, interpenetration and
porosity.

d Formulation of hypothesis and testing of
hypothesis is quite feasible. This leads to definitive
conclusions and allows for rapid identification of
important parameters which impact hydrogen
uptake.



MOF: Hydrogen Storage Capacities (50 bar, 77 K)
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Stored hydrogen per mass and per volume

(only metal hydrides showing good recycling are included)
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Independent Verification of MOF-177 Hydrogen Uptake Capacity

(volumetric and gravimetric measurements verified, shown using gravimetric scale)
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Feasibility of MOFs for hydrogen storage
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Objectives (FY08-09)

How to increase hydrogen storage at room temperature?

1. Implementation of "soft chemisorption”: design and
preparation of new MOF with metal binding sites
" I[mpregnation of metals
* Low-pressure measurements at various temperatures

2. Preparation of high-surface area MOFs for isoreticular
covalent organic functionalization
" Preparation of expanded organic link
* High-throughput MOF synthesis

3. Coordination with theory
" Prediction of binding energy
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Strategy: Possible routes for metal
impregnation
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Control coordination number
without losing exposed metal
surface



Synthesis and Impregnation of IRMOF-31
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Other metal sources (LiNH,, LiAlH,,
NaH, and KH) didn’t show enough
solubility in THF and ether

Pressure / Torr

Initial slope (Henry’s constant) is not improved.
- Metal amount in the MOF is not enough to show clear difference.

Low coordination number may not be a good way to immobilize metals. 10




MOFs with bipyridine link

MOF-253

(AI-BPyDC)

Metal

MOF-267 (Zr-BPyDC)
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Preparation of Al or Zr-MOFs

Why?
Does not form small molecules (e.g. M(BPy),)

Higher stability compared to Zn-MOFs

e Stable in water

Simple synthetic procedure
e Reflux in water
* Easy to scale-up

Prevention of metal exchange during the

metal impregnation process
* Metal exchange to Zn was observed in IRMOF-3
system

12



Theoretical prediction of binding energy

Model system:
[(BPyDC)M(CO),]*

sM™ =Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
andZn (n=0, 1and 2)
=DFT calculations

[(BPy)VZ*](H,), J. Mendoza-Cortés & W. Goddard (Caltech)

n = 0: Mn has stronger binding energy to BPyDC than its cohesive energy.

n =1: Mn*, Co*, Ni*, Cu*, and Zn* have stronger binding energy to the ligand.
n = 2: All metals are favorable for formation of (BPyDC)M?* complexes.
Metal impregnated materials would be experimentally accessible.

Interaction between H, molecules and the (BPyDC)M?*
(BPyDC)M?*(H,), average H, binding energies per one H, molecule:
-24.6 kJ mol* for Zn?** to -62.2 kJ mol* for V?*

=>» These are ideal values for H, storage at room temperature. 13



Metal impregnation in bipyridine-MOFs
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= Pristine MOF-253 was immersed in the solution containing Sc, Cr, and Fe ions.
= MOF-H, interaction does not seem to be improved. = Low metal loading (ICP)
= Bipyridine ring can rotate. = Rigid linker would be preferred.

= Other metals will be tested (e.g. Pt, Pd)
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Synthesis of Zr-MOFs
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MOF-266 (Zr-NH,-BDC) 1100 15
MOF-267 (Zr-BPyDC) 1550 11
UiO-67 (Zr-BPDC)* 1780 13

*Cavka et al., JACS, 2008, 130, 13850.

We will investigate metal-impregnated materials. 15



MOFs with ethylenediamine groups
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MIL-53 and MIL-101 analogues with ethylenediamine groups were prepared.
16



H2 uptake / cm3 g-1
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H, isotherms for MOF-153s

| |
® MOF-153n-Sc (200 °C)
® MOF-153n-Sc (RT)

® MIL-53

® MIL-53 + Sc(NO3)s

Functionalities
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Ethylenediamine + Sc

Ethylenediamine + Sc
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600 800

Pressure / Torr

Although isoreticular metallation of MOFs
showed smaller H, uptake, initial slope for MOF-
153n-Sc can be better. However, no
improvement was observed when Cr and V were
used.

17



H, isotherms for MOF-202s
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Due to the large decrease in surface area, it is difficult to see the effect of
metal impregnation. 18



Ho uptake / cm3 g-1
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Isoreticular covalent organic functionalization followed by
metallation resulted in the initial Q,, value improving by 10%.
Higher metal density is required for greater Q, values.

H, isotherms for UMCMs
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Toward highly porous MOFs

Surface area and pore volume of MOFs were decreased by the isoreticular-
modification processes. Although meso-porosity is not preferable to store
hydrogen at RT, larger pore size distribution should be important for
isoreticular covalent organic functionalization and metallation.

Typical expanded links oD

4 New MOFs in hand
MOF-399
Cubic
a=67.78 A
d=0.13gcm?3
MOF-180 MOF-188
Trigonal Cubic
a=46.04 A a=30.35A
c=37.22 A d=0.38gcm3
d=0.25gcm?3

.

Super critical CO, drying or freeze drying will be performed to survey

optimized activation condition.

20




Approach 1: Post-synthesis modification of MOFs (e.g.
potential halogen-lithium exchange)

O
S o d=1147gcm?

| S O Li-IRMOF-19
IRMOF-19 5 5 d=0.676 gcm?3

Li
R-3m
a=23.8130A, c=31.0160 A
V= 15231.6 A3 If each Li in the link can capture 3 H,
molecules, 4-5 wt% of H, uptake at RT
= MOF-5 type topology is expected.

= Doubly interpenetrated framework 21



Approach 2: Use inorganic SBUs with transition metals
Predicted to have higher adsorptive energy

E, (kJ mol?) 21.9

d (A) 2.35 2.07 1.93 2.32 2.42

Sun et al., JACS 2007

22



Reticular synthesis of novel materials combining all attributes
deemed favorable to hydrogen storage

= Highly porous with little dead volume
= Smaller pore diameter (< 10 A)

= Unsaturated metal surface

= Large density of strong binding sites
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Approach 3: Impregnation of MOFs with organometallic
buckyballs

MOF-177 or other high surface
area MOFs can be hosts for
organometallic Cg),.

S.S. Han and W. Goddard (Caltech)
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Cgo is Not enough to improve H, uptake capacity at RT. 24



Approach 4: Isoreticular expansion

H,BTC

MOF-177 MOF-200



Summary

Relevance: For room temperature hydrogen storage, a systematic survey was
pursued experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen
uptake capacity without losing pore volume.

Technical accomplishments and progress:
= Preparation of novel MOFs with various functionalities
= Post synthesis modification of MOFs for metal impregnation
= High throughput synthesis for ultra-high surface area MOFs

Technology transfer/collaborations: Active relationship with collaboration
partners and BASF. Began collaboration with Goddard theory group.

Proposed future research:
= Employ light weight metals to create strong binding sites.
= Material design based on theoretical prediction.

26



Current Group Members

27



	HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS
	Overview
	Important Aspects of MOF Chemistry 
	MOF: Hydrogen Storage Capacities (50 bar, 77 K)
	Stored hydrogen per mass and per volume
	Independent Verification of MOF‐177 Hydrogen Uptake Capacity
	Feasibility of MOFs for hydrogen storage
	Objectives (FY08‐09)
	Strategy: Possible routes for metal impregnation
	Synthesis and Impregnation of IRMOF-31
	MOFs with bipyridine link
	Preparation of Al or Zr-MOFs
	Theoretical prediction of binding energy
	Metal impregnation in bipyridine-MOFs
	Synthesis of Zr-MOFs
	MOFs with ethylenediaminegroups
	H2isotherms for MOF‐153s
	H2isotherms for MOF‐202s
	H2 isotherms for UMCMs
	Toward highly porous MOFs
	Approach 1: Post‐synthesis modification of MOFs (e.g. potential halogen‐lithium exchange)
	Approach 2: Use inorganic SBUs with transition metalsPredicted to have higher adsorptive energy
	Reticular synthesis of novel materials combining all attributes deemed favorable to hydrogen storage
	Approach 3: Impregnation of MOFs with organometallicbuckyballs
	Approach 4: Isoreticularexpansion
	Summary
	Current Group Members



