Compact (L)H₂ Storage with Extended Dormancy in Cryogenic Pressure Vessels

Gene Berry, Salvador Aceves
Francisco Espinosa, Tim Ross,
Vernon Switzer, Ray Smith,
Andrew Weisberg

Lawrence Livermore National Laboratory
May 22, 2009

This presentation does not contain any proprietary or confidential information
Overview

Timeline
• Start date: October 2004
• End date: September 2011
• Percent complete: 70%

Budget
• Total project funding
 – DOE: $4.5M
• Funding for FY08:
 – $1.2M
• Funding for FY09:
 – $2.25M

Barriers
• A. Volume and weight
• O. Hydrogen boil-off

Targets
• 2010 DOE volume target
• 2010 DOE weight target

Partners
• CRADA with BMW
• CRADA with Structural Composites Industries (SCI)
Relevance: Cryogenic pressure vessels offer technical potential to exceed 2010 H₂ storage goals, and approach 2015.
Approach: Build systems exceeding 2010 volume/weight targets in collaboration with industrial partners understand fundamental potential of both system & H₂ behavior

- Fabricate third generation cryotank storing \(>45 \text{ kg H}_2/\text{m}^3\) system
- Achieve \(>1\) week of dormancy
- Understand dormancy impacts of para-ortho conversion
- Investigate composite vessel impacts on vacuum quality
- Demonstrate adequate cycle life, (cryogenic shock, high pressure)
- Cryogenic vessel development and burst testing
- Explore superliquid \(H_2\) \((\rho>70 \text{ kgH}_2/\text{m}^3)\)
Collaborations:
We have entered into cooperative research & development (CRADA) agreements with an automaker and pressure vessel manufacturer

• **CRADA with BMW** collaboration has been intensifying over 3 years. CRADA finalized June 2008 to investigate vacuum stability, conduct cryogenic pressure cycling, and study conversion to *ortho*-H$_2$. BMW provides great automotive focus to our experimental and demonstration efforts.

• **CRADA with Structural Composites Industries (SCI):** Jan. 2009 CRADA formalized a longstanding relationship in high pressure and H$_2$ work of over two decades. Using LLNL’s thermal/mechanical analysis capability and H$_2$ experience as well as SCI’s in-depth composite cylinder design & manufacturing expertise to develop highly efficient and lower cost pressure vessels designed specifically for cryogenic H$_2$ storage.
We have refined our 3rd generation system to meet/exceed 2010 volume and weight targets

- Lighter, smaller vessel (4000 psi)
- Shorter, stronger boss (18,000+psi)
- Longer conduction paths (H₂ lines)
- Fewer support rings (3 to 2)
- Vacuum thickness cut by 2/3
- Less MLI layers in complex areas
- 3kW internal heat exchanger (BMW)
- LH₂ fill valve outside vacuum jacket

- Proof tested to 6600 psi
- Fabrication/integration complete
- System cryoshocked & leak tested
- Onboard dormancy test scheduled
3rd generation cryotank & vacuum jacket saves 25 kg & 70 liters
Storing 7.4 wt% H₂ at 45.2 kg H₂/m³

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>wt%H₂</th>
<th>Volume (L)</th>
<th>kgH₂/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 psi vessel+boss</td>
<td>60.9</td>
<td>14.9</td>
<td>179</td>
</tr>
<tr>
<td>Steel vacuum jacket</td>
<td>57.1</td>
<td>8.3</td>
<td>225.4</td>
</tr>
<tr>
<td>Ancillary components</td>
<td>16</td>
<td>7.4</td>
<td>11</td>
</tr>
</tbody>
</table>
3.5 day calculated dormancy of 10.7 kgLH₂ (full) in 3rd gen vessel (~7 watts, 4000 psi, H₂ heat capacity only)
6.5 day calculated dormancy if 80% full w/LH$_2$
(7 Watts, 4000 psi, H$_2$ heat capacity only)

![Graph showing internal energy vs. hydrogen density and temperature relationships.](image-url)
Vessel warming combined with (theoretical) conversion to ortho-H₂ could extend dormancy of 8.55 kg LH₂ (80% full) to 11+ days.
We will assess *para*-\(H_2\) to *ortho*-\(H_2\) conversion by experiments warming \(H_2\) outside two-phase LH\(_2\) region complemented by a surrogate test with He if warranted.

- Measure Weight, Pressure, & Temperature
- Integrated (20-100K) test and/or fixed T
- Results interpretable w/o vessel corrections
- Aggregate *para*-orth*o* conversion impact directly measured by He surrogate test
- Full scale (163 L) test & expt. range (T,P, \(\rho\))
- 10 ksi vessel w/ coolant & vacuum jacket
- Hardware capability to confirm/reverse *para*-orth*o* conversion at automotive scale
- Collaborating with BMW on experimental strategy, methodology
- Exp’t simulations use real properties of all \(L(H_2)\) states, phases
Outgassing experiments on as received 1 liter composite vessel: H$_2$O majority component, hydrocarbons not improved by baking

Table

<table>
<thead>
<tr>
<th>Compound (and boiling point)</th>
<th>Concentration in parts per billion by vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient</td>
</tr>
<tr>
<td></td>
<td>First test No cycling</td>
</tr>
<tr>
<td>Water (100°C)</td>
<td>80,000</td>
</tr>
<tr>
<td>Acetaldehyde (20.2°C)</td>
<td>23</td>
</tr>
<tr>
<td>Acetone, (56.5°C)</td>
<td>85</td>
</tr>
<tr>
<td>Ethanol, (78.4°C)</td>
<td>87</td>
</tr>
<tr>
<td>Isopropyl alcohol (83.6°C)</td>
<td>23</td>
</tr>
<tr>
<td>Trichloroethylene (87.2°C)</td>
<td>6.2</td>
</tr>
<tr>
<td>1-propanol (97.1°C)</td>
<td>360</td>
</tr>
<tr>
<td>Toluene (110.6°C)</td>
<td>2.7</td>
</tr>
<tr>
<td>Acetic acid butyl ester (126°C)</td>
<td>2900</td>
</tr>
<tr>
<td>Ethyl benzene (136°C)</td>
<td>4.7</td>
</tr>
<tr>
<td>Xylenes, total (140°C)</td>
<td>20</td>
</tr>
<tr>
<td>Styrene (145°C)</td>
<td>5.9</td>
</tr>
<tr>
<td>2-heptanone (151°C)</td>
<td>39</td>
</tr>
<tr>
<td>1, 3, 5 trimethylbenzene (164°C)</td>
<td>1.7</td>
</tr>
<tr>
<td>1, 2, 4 trimethylbenzene (169°C)</td>
<td>1.9</td>
</tr>
<tr>
<td>Total hydrocarbons</td>
<td>321</td>
</tr>
<tr>
<td>Total</td>
<td>80,321</td>
</tr>
</tbody>
</table>

Dormancy test cut short by valve leak into vacuum

Oven in pressure cell

1 liter vessel under vacuum in oven
Outgassing experiments have been planned in collaboration with BMW to separate pressure cycling (Ar) from thermal effects and investigate vessel processing and surface treatments

- **Pre-bake vessels to 100°C:** Determine if H$_2$O can be essentially eliminated.

- **Cycle vessels slowly or with cooled gas:** Keeping vessels at ambient temperature (or below) better represents expected onboard conditions. Measurements after 10 & 100 pressure cycles

- **Outgassing from vacuum cured vessels with/without UV coating:** Investigate processing effects on outgassing, and potential cycling effects on coatings
A 4000 psi vessel identical to the 3rd generation storage system will be cryogenically cycle tested

- High & Low Pressure at Cryogenic T (20-100 Kelvin)
- Vacuum jacketed vessel warmed internally (2-5 kW)
- Ultrasound characterization after hundreds of cycles
We will acquire a high pressure cryogenic H$_2$ fueling capability

- **We currently fill at low pressure** from a conventional LH$_2$ storage vessel
- **A high pressure LH$_2$ pump** offers rapid single phase refueling without boiloff
- **Site Permission and Utilities granted**
 Will also serve for high pressure cryogenic H$_2$ testing (e.g. para-ortho)
- **We plan to explore densities beyond LH$_2$**
 to meet DOE’s ultimate storage goals. Pressurized LH$_2$ is up to \sim25% more compact and needs to be studied, tested, and ultimately demonstrated onboard
Pressure vessel designs can be improved by accounting for vessel usage

Current automotive \(\text{H}_2 \) vessel
- Filled with \(\text{H}_2 \) at up to 80°C
- Service pressure: 5000 psi
- Fill pressure: 6250 psi
- Burst pressure: 11,250 psi

Future automotive cryo-\(\text{H}_2 \) vessel
- Filled only with cold \(\text{H}_2 \)
- Service pressure: 5000 psi
- Fill pressure: 5000 psi
- Burst pressure: 9,000 psi
Cryogenics offers dramatic safety opportunities: cooling H₂ removes far more burst energy than reducing pressure.
Cryogenic pressure vessel systems will be less expensive than ambient compressed H₂ storage for fundamental reasons

- **Compact LH₂ (71 vs. 23-39 kgH₂/m³)** cuts carbon fiber (per kg H₂ stored)
- **Pressurized LH₂** even more compact (‘top off’ potential up to 88 kgH₂/m³)
- **Cryogenic H₂** in protective vacuum jacket may enable glass fibers to provide more value than carbon
- **Very low burst energy, no fast fill overpressure, secondary containment** of vacuum jacket could justify lower burst pressure ratio (Pburst/Pdormancy), improving pressure vessel mass, volume, and structural efficiency

Source: TIAAX

- SCI cryotank (350 bar) cost estimates (per kgH₂ stored):
 - 30% less vs. ambient 350 bar
 - 60% less than 700 bar
Future work: after demonstrating superior weight and volume of cryogenic pressure vessels and adequate cycle life, study a spectrum of H$_2$ states and flexible pressure vessel systems

- **Pressurized LH$_2$** offers fertile ground for achieving ultimate DOE storage goals but requires new refueling strategies.

- **Normal LH$_2$** if our *para-ortho* transition experiments measure slow kinetics then we plan to investigate “normal” LH$_2$ (25% *para*) in cryotanks, anticipating liquefaction capital cost & energy savings.

- **Multiple Volume Vessels** offer flexible blend of capacity, weight, cost, shape, and dormancy over a single state H$_2$ storage vessel, but multiple states of onboard H$_2$ adds complexity.
Summary

- **Cryogenic pressure vessels can exceed 2010 DOE storage targets** for weight and volume, with promising dormancy & cost relative to conventional LH$_2$ tanks and ambient pressure vessels.

- **In collaboration with industrial partners, we are addressing interactions between pressure, temperature, and materials.** Outgassing, cryogenic cycling, and cryogenic burst tests.

- **We are investigating fundamental operational aspects at full scale:** internal heat exchange, dormancy and dormancy recovery, para-ortho conversion, higher density (pressurized) refueling.

- **Safety advantages of cryogenic pressure vessels are yet to be assessed.** Very low burst energy, fill vs. dormancy safety factor, protective vacuum jacket, material strength at cryogenic temps.